/* ----------------------------------------------------------------------- Copyright: 2010-2021, imec Vision Lab, University of Antwerp 2014-2021, CWI, Amsterdam Contact: astra@astra-toolbox.com Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- */ #include "astra/cuda/3d/util3d.h" #include "astra/cuda/3d/dims3d.h" #include #include #include #include #include namespace astraCUDA3d { static const unsigned int g_volBlockZ = 6; static const unsigned int g_anglesPerBlock = 32; static const unsigned int g_volBlockX = 16; static const unsigned int g_volBlockY = 32; static const unsigned g_MaxAngles = 1024; struct DevPar3DParams { float4 fNumU; float4 fNumV; }; __constant__ DevPar3DParams gC_C[g_MaxAngles]; __constant__ float gC_scale[g_MaxAngles]; #include "rounding.h" template __global__ void dev_par3D_BP(void* D_volData, unsigned int volPitch, cudaTextureObject_t tex, int startAngle, int angleOffset, const SDimensions3D dims, float fOutputScale) { float* volData = (float*)D_volData; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles - angleOffset) endAngle = dims.iProjAngles - angleOffset; // threadIdx: x = rel x // y = rel y // blockIdx: x = x + y // y = z const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x; const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y; if (X >= dims.iVolX) return; if (Y >= dims.iVolY) return; const int startZ = blockIdx.y * g_volBlockZ; float fX = X - 0.5f*dims.iVolX + 0.5f; float fY = Y - 0.5f*dims.iVolY + 0.5f; float fZ = startZ - 0.5f*dims.iVolZ + 0.5f; float Z[ZSIZE]; for(int i=0; i < ZSIZE; i++) Z[i] = 0.0f; { float fAngle = startAngle + angleOffset + 0.5f; for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f) { float4 fCu = gC_C[angle].fNumU; float4 fCv = gC_C[angle].fNumV; float fS = gC_scale[angle]; float fU = fCu.w + fX * fCu.x + fY * fCu.y + fZ * fCu.z; float fV = fCv.w + fX * fCv.x + fY * fCv.y + fZ * fCv.z; // printf("%f %f\n", fU, fV); for (int idx = 0; idx < ZSIZE; ++idx) { float fVal; textype h5 = texto(0.5f); textype fU_ = texto(fU); textype fUf_ = texto(floor(fU)); float fUf = floor(fU); if ((fU - fUf) < 0.5f) { textype fVal1 = texto(tex3D(tex, fUf - 0.5f, fAngle, fV)); textype fVal2 = texto(tex3D(tex, fUf + 0.5f, fAngle, fV)); fVal = texfrom(fVal1 + (fU_ + h5 - fUf_) * (fVal2 - fVal1)); } else { textype fVal1 = texto(tex3D(tex, fUf + 0.5f, fAngle, fV)); textype fVal2 = texto(tex3D(tex, fUf + 1.5f, fAngle, fV)); fVal = texfrom(fVal1 + (fU_ - h5 - fUf_) * (fVal2 - fVal1)); } // float fVal = tex3D(tex, fU, fAngle, fV); Z[idx] += fVal * fS; fU += fCu.z; fV += fCv.z; } } } int endZ = ZSIZE; if (endZ > dims.iVolZ - startZ) endZ = dims.iVolZ - startZ; for(int i=0; i < endZ; i++) volData[((startZ+i)*dims.iVolY+Y)*volPitch+X] += Z[i] * fOutputScale; } // supersampling version __global__ void dev_par3D_BP_SS(void* D_volData, unsigned int volPitch, cudaTextureObject_t tex, int startAngle, int angleOffset, const SDimensions3D dims, int iRaysPerVoxelDim, float fOutputScale) { float* volData = (float*)D_volData; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles - angleOffset) endAngle = dims.iProjAngles - angleOffset; // threadIdx: x = rel x // y = rel y // blockIdx: x = x + y // y = z // TO TRY: precompute part of detector intersection formulas in shared mem? // TO TRY: inner loop over z, gather ray values in shared mem const int X = blockIdx.x % ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockX + threadIdx.x; const int Y = blockIdx.x / ((dims.iVolX+g_volBlockX-1)/g_volBlockX) * g_volBlockY + threadIdx.y; if (X >= dims.iVolX) return; if (Y >= dims.iVolY) return; const int startZ = blockIdx.y * g_volBlockZ; int endZ = startZ + g_volBlockZ; if (endZ > dims.iVolZ) endZ = dims.iVolZ; float fX = X - 0.5f*dims.iVolX + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim; float fY = Y - 0.5f*dims.iVolY + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim; float fZ = startZ - 0.5f*dims.iVolZ + 0.5f - 0.5f + 0.5f/iRaysPerVoxelDim; const float fSubStep = 1.0f/iRaysPerVoxelDim; fOutputScale /= (iRaysPerVoxelDim*iRaysPerVoxelDim*iRaysPerVoxelDim); for (int Z = startZ; Z < endZ; ++Z, fZ += 1.0f) { float fVal = 0.0f; float fAngle = startAngle + angleOffset + 0.5f; for (int angle = startAngle; angle < endAngle; ++angle, fAngle += 1.0f) { float4 fCu = gC_C[angle].fNumU; float4 fCv = gC_C[angle].fNumV; float fS = gC_scale[angle]; float fXs = fX; for (int iSubX = 0; iSubX < iRaysPerVoxelDim; ++iSubX) { float fYs = fY; for (int iSubY = 0; iSubY < iRaysPerVoxelDim; ++iSubY) { float fZs = fZ; for (int iSubZ = 0; iSubZ < iRaysPerVoxelDim; ++iSubZ) { const float fU = fCu.w + fXs * fCu.x + fYs * fCu.y + fZs * fCu.z; const float fV = fCv.w + fXs * fCv.x + fYs * fCv.y + fZs * fCv.z; fVal += tex3D(tex, fU, fAngle, fV) * fS; fZs += fSubStep; } fYs += fSubStep; } fXs += fSubStep; } } volData[(Z*dims.iVolY+Y)*volPitch+X] += fVal * fOutputScale; } } bool transferConstants(const SPar3DProjection* angles, unsigned int iProjAngles, const SProjectorParams3D& params) { DevPar3DParams *p = new DevPar3DParams[iProjAngles]; float *s = new float[iProjAngles]; for (unsigned int i = 0; i < iProjAngles; ++i) { Vec3 u(angles[i].fDetUX, angles[i].fDetUY, angles[i].fDetUZ); Vec3 v(angles[i].fDetVX, angles[i].fDetVY, angles[i].fDetVZ); Vec3 r(angles[i].fRayX, angles[i].fRayY, angles[i].fRayZ); Vec3 d(angles[i].fDetSX, angles[i].fDetSY, angles[i].fDetSZ); double fDen = det3(r,u,v); p[i].fNumU.x = -det3x(r,v) / fDen; p[i].fNumU.y = -det3y(r,v) / fDen; p[i].fNumU.z = -det3z(r,v) / fDen; p[i].fNumU.w = -det3(r,d,v) / fDen; p[i].fNumV.x = det3x(r,u) / fDen; p[i].fNumV.y = det3y(r,u) / fDen; p[i].fNumV.z = det3z(r,u) / fDen; p[i].fNumV.w = det3(r,d,u) / fDen; s[i] = 1.0 / scaled_cross3(u,v,Vec3(params.fVolScaleX,params.fVolScaleY,params.fVolScaleZ)).norm(); } cudaMemcpyToSymbol(gC_C, p, iProjAngles*sizeof(DevPar3DParams), 0, cudaMemcpyHostToDevice); cudaMemcpyToSymbol(gC_scale, s, iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); delete[] p; delete[] s; return true; } bool Par3DBP_Array(cudaPitchedPtr D_volumeData, cudaArray *D_projArray, const SDimensions3D& dims, const SPar3DProjection* angles, const SProjectorParams3D& params) { cudaTextureObject_t D_texObj; if (!createTextureObject3D(D_projArray, D_texObj)) return false; float fOutputScale = params.fOutputScale * params.fVolScaleX * params.fVolScaleY * params.fVolScaleZ; bool ok = true; for (unsigned int th = 0; th < dims.iProjAngles; th += g_MaxAngles) { unsigned int angleCount = g_MaxAngles; if (th + angleCount > dims.iProjAngles) angleCount = dims.iProjAngles - th; ok = transferConstants(angles, angleCount, params); if (!ok) break; dim3 dimBlock(g_volBlockX, g_volBlockY); dim3 dimGrid(((dims.iVolX+g_volBlockX-1)/g_volBlockX)*((dims.iVolY+g_volBlockY-1)/g_volBlockY), (dims.iVolZ+g_volBlockZ-1)/g_volBlockZ); // timeval t; // tic(t); for (unsigned int i = 0; i < angleCount; i += g_anglesPerBlock) { // printf("Calling BP: %d, %dx%d, %dx%d to %p\n", i, dimBlock.x, dimBlock.y, dimGrid.x, dimGrid.y, (void*)D_volumeData.ptr); if (params.iRaysPerVoxelDim == 1) { if (dims.iVolZ == 1) { dev_par3D_BP<1><<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale); } else { dev_par3D_BP<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, fOutputScale); } } else dev_par3D_BP_SS<<>>(D_volumeData.ptr, D_volumeData.pitch/sizeof(float), D_texObj, i, th, dims, params.iRaysPerVoxelDim, fOutputScale); } // TODO: Consider not synchronizing here, if possible. ok = checkCuda(cudaThreadSynchronize(), "cone_bp"); if (!ok) break; angles = angles + angleCount; // printf("%f\n", toc(t)); } cudaDestroyTextureObject(D_texObj); return true; } bool Par3DBP(cudaPitchedPtr D_volumeData, cudaPitchedPtr D_projData, const SDimensions3D& dims, const SPar3DProjection* angles, const SProjectorParams3D& params) { // transfer projections to array cudaArray* cuArray = allocateProjectionArray(dims); transferProjectionsToArray(D_projData, cuArray, dims); bool ret = Par3DBP_Array(D_volumeData, cuArray, dims, angles, params); cudaFreeArray(cuArray); return ret; } }