Dr. Suren A. Chilingaryan Data Processing and Performance Expert | Lead of Cloud Computing

@ csa@suren.me
 S skype:csa8000
 http://suren.me
 S Scholar
 I do research in high-performance and heterogeneous computing and apply it to architect online systems for scientific instrumentation. With improvements in detector technology, I believe new approaches are required to keep pace with the increasing data rates. Codesign of hardware, software, and analysis algorithms is often a key to successful projects. Currently, I lead an effort to adopt cloud technologies for data acquisition and control systems.

Areas of expertise

High performance computing Distributed data acquisition and control systems Performance analysis and software optimization techniques Parallel algorithms and parallel hardware architectures Low-latency communication in heterogeneous systems Cloud-based data management and visualization

TECHNICAL SKILLS

Programming	C/C++, IPC, TCP/IP, CUDA/OpenCL, SSE/AltiVec, OpenMP/NPTL
System	POSIX, Linux Internals, PCI Drivers, DMA, GPUDirect/DirectGMA
Programming	
Networking	Ethernet/Infiniband, Sockets/MPI/0MQ, RDMA (ROCe), LibVMA
Software Analysis	gdb, perf/operf, nvvp/nvprof, vtune, valgrind, systap, tcpdump
Scientific	MATLAB, Python/SciPy, ROOT, BLAS/LAPACK
Computing	
Data Management	Brokers, Databases (SQL/NOSQL), XML & Co, Web Development
Orchestration	Ansible, OpenShift, Docker, LibVirt/KVM, Infiniband, GlusterFS

Employment

Since 2020	Leader of CloudDAQ project at Karlsruhe Institute of Technology: Research
	on cloud technologies for control and data acquisition applications
2013 - 2020	Data processing and performance expert at KIT: high-performance
	instrumentation for large-scale scientific experiments
2007 - 2012	Postdoctoral researcher at KIT: data management & software optimization
2005 - 2007	Software engineer at Yerevan Physics Institute: data acquisition systems
2002 - 2005	Associate researcher at Forschungszentrum Karlsruhe
2001 - 2002	Software engineer at Yerevan Physics Institute

EDUCATION

July 2006	PhD in Computer Engineering "Data Exchange Solution for Distributed Data Acquisition Systems and its application for Cosmic Ray Monitor Networks",
	National Academy of Science, Armenia
1996 – 2001	MSc in Mathematics "Data Processing using Neural Networks", Moscow State University, Russia

PERSONAL DATA

Nationality	Armenian, Russian Federation, residence permit in Germany
Languages	English, Armenian, Russian

Projects

Ongoing	Cloud technologies for heterogeneous control systems Responisble for operation of the Kaas platform
>	Prepare the KATRIN infrastructure for new high-speed detectors
2018 – 2020 > > >	Katrin-as-a-Service Cloud Platform Proposed, built, and maintain the KaaS cloud platform for the KATRIN experiment Coordinated migration of the KATRIN services to the KaaS platform Made a distributed and scalable version of the ADEI data management system Supervised development of online monitoring framework for the ADEI ecosystem
2017 – 2020 > > >	Research of undocumented aspects in GPU architectures Investigated performance imbalances and hidden parallelism in GPU architectures Developed method to exploit intra-SM parallelism (up to 30% speed-up) Evaluated methods of approximate computing for tomography (quality vs. speed-up) Applied these techniques to speed-up tomographic reconstruction by extra 4-6 times via performance modeling and rebalancing of hardware usage [s11554-019-00883-w]
2010 - 2018	Coordinated student exchange program with Tomsk Polytechnic University
2012 – 2017 > > > >	Data Acquisition Platform for UFO ecosystem Developed a driver platform for fast prototyping of PCIe-based electronics with a modular (user-space) DMA engine (up to 12 GB/s) and scirpting/debugging support Implemented drivers for in-house electronics, e.g. camera (<i>in use at KIT and Desy</i>) Used RDMA and GPUDirect/DirectGMA to intercommunicate detectors with GPUs Participated in a case study on applications of GPUs for CMS track trigger, decision on acceptance of a track candidate was made within 6 μ s (data transfer + analysis) GPUs allowed to utilize a more precise algorithm than was possible with classic designs
2015 – 2016 >	Cloud platform for collaborative analysis of tomographic data Led development of web-visualization for large and time-resolved volumes
2011 – 2015 > > > >	UFO: Ultrafast tomography with online monitoring and image-based control Proposed a scalable architecture for pipelined processing of image streams Coordinated software development with a team in KIT and 3 Russian universities Supervised development of fast reconstruction algorithms (up to 6 GB/s per node) Supervised development of regularized reconstruction methods to compensate low SNR and/or undersampling in case of high-speed tomography Since 2016, the developed system is installed at the KIT synchrotron and enables both high-speed (5 volumes/second) and high-throughput (1000 samples/week) operation
2011 – 2014 > > > >	ADEI: Advanced Data Extraction Infrastructure Helped to secure funding and initiated collaboration between KIT and YerPhI Supervised a cross-university team of researchers and engineers Developed a platform for exploration and analysis of time-series in terascale archives System is in operation in YerPhI, the SEVAN network, and 7 major facilities at KIT
2009 – 2013 > > > >	Parallel algorithms and software optimization Developed parallel algorithms for μ PIV (micro-particle velocimetry) Leveraged the PoweXCell architecture for a MRSES feature selection algorithm Optimized performance of PyHST (ESRF tomographic framework) Implemented a digital image correlation and tracking algorithm for GPUs
2002 – 2008 > > >	Distributed systems for data acquistion and slow control Stabilized a slow control system of the KATRIN experiment for production use <i>(in use)</i> Built a distributed data acquisition system for ASEC particle detector networks <i>(in use)</i> Developed drivers for PCI neuro-accelerator and evaluated it for control applications

EXPERIMENTS AND COLLABORATIONS

	Current
Since 2020	PANDA: antiProton ANnihilation in Darmstadt, Germany (Member)
Since 2013	BESS: Battery Technology Center at <i>KIT</i> , Germany
Since 2008	KARA: Karlsruhe Research Accelerator, <i>KIT</i> , Germany
Since 2007	KATRIN: Karlsruhe Tritium Neutrino Experiment, Germany (Member)
Since 2006	SEVAN: Space Environment Viewing and Analysis Network; coordinated by <i>YerPhI</i>
Since 2001	ASEC: Aragats Space Environmental Center, Armenia (Member)
	Past
2020 – 2021	CCPi: Collaborative Computational Project for Imaging; led by UoM and STFC
2014 - 2018	HZG: Helmholtz-Zentrum Geesthacht, Germany
2010 - 2018	TPU: Tomsk Polytechnic University, Russia
2016 - 2017	CMS: Compact Muon Solenoid, <i>CERN</i>
2016 - 2017	UFO: German-Russian Collaboration on Ultrafast Tomography
2010 - 2017	SCI: Shubnikov Crystallography Institute, Russia
2009 - 2015	KIT Cube: Integrated atmospheric observation system (operated by <i>KIT</i>)
2009 - 2015	KIT Tower: Meteorological tower at <i>KIT</i> North Campus, Germany
2008 - 2014	TOSKA: Test facility for fusion magnets at <i>KIT</i> , Germany
2008 - 2014	ESRF: European Synchrotron Radiation Facility, France

Funding

2021	(Author) investments for upgrade of <i>KaaS</i> cluster <i>KATRIN</i> (100 k€) KaaS (2021)
2020	(Contributing author) investments to integrate ROCe protocol in <i>UFO</i> DAQ system KCETA (6 k€) RoCE (2020)
2019	(Technical contribution) to <i>MT-DTS ST2</i> subtopic in <i>Matter and Technologie</i> program Helmholtz MT-DTS (2021 – 2027)
2013, 2016	(Technical contribution) projects on collaborative analysis of tomographic datasets BMBF (750 k€) ASTOR (2013 – 2016) NOVA (2016 – 2020)
2012	(Contributing author) networking grant for cooperation with ASEC BMBF (15 k \in) ADEI (2013 – 2015)
2011	(Contributing author) <i>Vaporciyan Multivariate Analysis and Visualization</i> (non- governmental grant by Armenian diaspora) Diaspora (100 k\$) VMAV (2012 – 2014)
2010, 2011	(Contributing author) Ultra Fast X-ray Imaging of Scientific Processes with On-line Assessment and Data-driven Process Control BMBF (2.5 m€) UFO-1 (2010 – 2013) UFO-2 (2012 – 2015)
2009	(Technical contribution) to HDRI (High Data Rate Processing and Analysis) initiative in Helmholtz PNI (Photons, Neutrons, Ions) research program Helmholtz HDRI (2010 – 2014)

LEADERSHIP

Since 2020	Leading efforts to prepare the <i>KATRIN</i> data infrastructure for the <i>Tristan</i> detector Group: 2 PhD 2 students
2018 - 2020	Led development of the <i>KATRIN</i> cloud platform and migration of services Group: 2 Postdocs PhD 2 students
2013 – 2018	Led volume visualization task force in the <i>ASTOR</i> and <i>NOVA</i> projects Group: PhD 5 students

2010 - 2018	Coordinated a program on stewardship of theses for <i>TPU</i> students Participation: 3 PhD 12 students
2010 - 2016	Led a collaboration with <i>ASEC</i> on online data analysis platform Group: Postdoc and PhD in <i>KIT</i> Postdoc and 2 engineers at <i>ASEC</i> 10 students
2010 - 2017	Coordinated a work-package on tomographic software in the <i>UFO</i> project Group: 3 PhD in <i>KIT</i> 3 PhD in partner universities 5 students

Responsibilities

	Current
Since 2018	Data management cloud at <i>KATRIN</i>
Since 2013	Data management system for KIT Battery Technology Center
Since 2011	Software stack of UFO data acquisition platform
Since 2007	Slow control system at <i>KATRIN</i>
	Past
2017 – 2018	Transfer of UFO Camera technology to HZG
2010 - 2017	Parallel computing cluster for UFO project
2013 – 2016	Technology transfer to ASEC and SEVAN experiments
2009 - 2015	Data portal for KIT Cube experiment and KIT Weather Tower
2008 - 2014	Maintenance and optimization of KARA branch of PyHST
2008 - 2014	Data management system at TOSKA and CULTKA facilities
2007 - 2009	Integration of <i>KATRIN</i> components in centralized control system
2005 - 2007	Data acquisition and data management at ASEC and SEVAN
2003 - 2005	Intercommunication between <i>KATRIN</i> DAQ and NI fieldpoint devices
2001 - 2002	IT infrastructure of <i>ASEC</i>

Scientific and open-source software

	Maintain
Since 2018	KaaS: Katrin-as-a-Service data management platform for KATRIN ands.suren.me KATRIN
Since 2015	Bora: monitoring framework for ADEI ecosystem bora.suren.me KATRIN
Since 2011	Alps: Linux driver platform for fast prototyping of PCIe-based electronics alps.suren.me Camera at HZG Camera at SCI Kapture/Kalypso at KARA
Since 2008	ADEI: cloud platform for visualization and analysis of time-series adei.info KATRIN KARA ASEC BESS KIT Tower KIT Cube TOSKA
Since 2005	ADAS: data acquisition system for ASEC detectors adas.suren.me ASEC
Since 2003	RusXMMS: operations with multilingual strings in non-unicode encodings rusxmms.sf.net RedHat OpenSuSE Debian Ubuntu Arch FreeBSD
	Supervised and coordinated
2015 – 2018	WAVe: JavaScript volume rendering library based on WebGL wave.suren.me
2012 - 2017	UFO: image-processing framework and a collection of GPU-accelerated algorithms ufo-kit.github.io KARA

	Contributions
2020 - 2021	CCPi: Tomographic Imaging Project (<i>performance optimizations</i>) www.ccpi.ac.uk
2008 - 2014	PyHST: <i>ESRF</i> tomography software (<i>DFI algorithm and performance improvements</i>) pyhst2.suren.me KARA ESRF
	Obsolete
2010 – 2011	Obsolete MRSES: feature selection algorithm for Intel and PowerXCell architectures
2010 – 2011 2009 – 2010	

RESEARCH AND DEVELOPMENT

While the focus of my research is computing technologies, the developed instrumentation enabled major scientific break-throughs achieved by the KATRIN [4] and ASEC [19] collaborations. Below are referenced selected peer-reviewed publications which are either authored by me and my students or where we made a significant contribution.

Since 2011	High-bandwidth data acquisition and data-driven control
2018 – 2019	Fine-tuning of tomographic reconstruction algorithms through micro-benchmarking and performance modeling [2] UFO PyHST
2016 - 2017	Participated in a case study on applications of GPUs in the Level-1 track trigger for the next upgrade of the <i>CMS</i> experiment [8]
2016 - 2017	Designed a platform for synchrotron imaging beamlines with a possibility of online reconstruction and an image-based feedback loop [7], [15] UFO
2015 – 2016	Researched low-latency communication mechanisms for data-driven control applications [10]
2014 - 2015	Implemented fast DMA drivers with GPUDirect / DirectGMA support [12] Alps
2013 – 2014	Reviewed asymptotically fast methods of tomographic reconstruction well-fitted for GPU architectures [14] UFO PyHST
2011 - 2013	Researched software architectures for online processing of image streams [17] UFO
2011 – 2013	Developed a streaming data acquisition platform for scientific cameras [16] Alps
Since 2007	Parallel architectures, performance analysis, and software optimization
Since 2007	Parallel architectures, performance analysis, and software optimization
Since 2007 2020 – 2021	Parallel architectures, performance analysis, and software optimization Applied methods of approximate computing to enable reconstruction of large datasets using memory-intensive regularization methods [1]
	Applied methods of approximate computing to enable reconstruction of large datasets
2020 – 2021	Applied methods of approximate computing to enable reconstruction of large datasets using memory-intensive regularization methods [1] CCPi Researched performance imbalances and a hidden parallelism in GPU architectures and
2020 – 2021 2017 – 2018	Applied methods of approximate computing to enable reconstruction of large datasets using memory-intensive regularization methods [1] CCPi Researched performance imbalances and a hidden parallelism in GPU architectures and how they can be exploited to speed-up tomographic reconstruction [6] PyHST Investigated viable compromises between reconstruction quality and parallelization
2020 - 2021 2017 - 2018 2014 - 2017	Applied methods of approximate computing to enable reconstruction of large datasets using memory-intensive regularization methods [1] CCPi Researched performance imbalances and a hidden parallelism in GPU architectures and how they can be exploited to speed-up tomographic reconstruction [6] PyHST Investigated viable compromises between reconstruction quality and parallelization capabilities of tomographic algorithms [13] UFO
2020 - 2021 2017 - 2018 2014 - 2017 2013 - 2014	Applied methods of approximate computing to enable reconstruction of large datasets using memory-intensive regularization methods [1] CCPi Researched performance imbalances and a hidden parallelism in GPU architectures and how they can be exploited to speed-up tomographic reconstruction [6] PyHST Investigated viable compromises between reconstruction quality and parallelization capabilities of tomographic algorithms [13] UFO Developed parallel algorithms for μ PIV (micro-particle velocimetry) [5] UFO Leveraged the PoweXCell architecture for an MRSES feature selection algorithm
2020 - 2021 2017 - 2018 2014 - 2017 2013 - 2014 2010	Applied methods of approximate computing to enable reconstruction of large datasets using memory-intensive regularization methods [1] CCPi Researched performance imbalances and a hidden parallelism in GPU architectures and how they can be exploited to speed-up tomographic reconstruction [6] PyHST Investigated viable compromises between reconstruction quality and parallelization capabilities of tomographic algorithms [13] UFO Developed parallel algorithms for μ PIV (micro-particle velocimetry) [5] UFO Leveraged the PoweXCell architecture for an MRSES feature selection algorithm (5000x speed-up compared to a MATLAB prototype) MRSES

Since 1999	Digitization, data organization, and distributed control systems
Since 2019	Researching cloud technologies for highly heterogeneous control systems in large-scale scientific experiments [in preparation] KaaS
2015 – 2017	Researched remote visualization techniques for large and time-resolved tomographic volumes [3], [9] WAVe
2013 – 2015	Researched emerging web technologies for management and visualization of terabyte- scale archives with time-series ADEI
2011 – 2014	Converted the KATRIN data management system into a full flagged platform for time- series exploration and analysis
2008 - 2010	Developed data management modules of the KATRIN control system [20] ADEI
2007 - 2008	Stabilized the KATRIN slow control system for production use [11] KATRIN
2005 - 2006	Developed a data acquisition system for particle detector networks [22] ADAS
2002 - 2004	Researched network protocols for heterogeneous slow control systems [23] ADAS
1999 – 2001	Evaluated hardware-accelerated neural networks for trigger applications [24]

SUPERVISION AND TEACHING

Supervised PhD students

Since 2020	2 PhD on adoption of cloud technologies for data acquisition and control systems
	Co-supervised PhD students
2014 - 2018	thesis "Big Data Management and Visualisation"
2013 - 2017	work on collaborative tools for analysis of microtomography data
2013 - 2017	work on low-latency communication protocols for distributed data acquisition systems
2011 - 2016	thesis "An Extensible Parallel Computing Framework for Ultra-Fast X-Ray Imaging"
	Supervised MSc and BSc students
2014 - 2018	5 MSc theses on remote visualization of archives with tomographic data
2013 - 2017	4 students working on fast DMA interconnects between FPGA and GPUs
2011 - 2016	4 MSc and 2 BSc theses on advanced algorithms in tomographic reconstruction
2010 - 2015	10 internships on web technologies for visualization of time series
2014	2 MSc theses on GPU-accelerated algorithms for nano-particle tracking
	Courses and seminars
2019	GPU computing tutorial at ARBRA summer school in Nor-Amberd, Armenia

2019	GPU computing tutorial at ARBRA summer school in Nor-Amberd, Armenia
2014 - 2017	4 student projects at seminar "Advanced topics in Parallel Programming"
2013	GPU computing tutorial at KSETA graduate school at KIT

SELECTED PUBLICATIONS

- [1] E. Ametova *et al.*, *Crystalline phase discriminating neutron tomography using advanced reconstruction methods* (*preprint*), 2021. arXiv: 2102.06706.
- [2] S. Chilingaryan *et al.*, "Reviewing GPU architectures to build efficient back projection for parallel geometries," *Journal of Real-Time Image Processing*, vol. 17, pp. 1331–1373, 5 Oct. 2020. DOI: 10.1007/s11554-019-00883-w.
- [3] P. D. Lösel *et al.*, "Introducing Biomedisa as an open-source online platform for biomedical image segmentation," *Nature Communications*, vol. 11, no. 1, p. 5577, Nov. 2020. DOI: 10.1038/s41467-020-19303-w.
- [4] M. Aker *et al.*, "Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN," *Phys. Rev. Lett.*, vol. 123, p. 221 802, 22 Nov. 2019. DOI: 10.1103/PhysRevLett.123.221802.
- [5] P. Cavadini *et al.*, "Investigation of the flow structure in thin polymer films using 3D μPTV enhanced by GPU," *Experiments in Fluids*, vol. 59, no. 4, pp. 1–13, Mar. 2018. DOI: 10.1007/s00348-017-2482-z.
- [6] S. Chilingaryan *et al.*, "Balancing load of GPU subsystems to accelerate image reconstruction in parallel beam tomography," in *Proceedings of the 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)*, 2018. DOI: 10.1109/CAHPC.2018.8645862.
- [7] A. Kopmann *et al.*, "UFO a scalable platform for high-speed synchrotron X-ray imaging," in *Proceedings of the 2016 IEEE NSS/MIC*, 2017. DOI: 10.1109/NSSMIC.2016.8069895.
- [8] H. Mohr *et al.*, "Evaluation of GPUs as a level-1 track trigger for the High-Luminosity LHC," *Journal of Instrumentation*, vol. 12, no. 04, p. C04019, 2017. DOI: 10.1088/1748-0221/12/04/c04019.
- [9] N. Tan Jerome *et al.*, "WAVE: A 3D online previewing framework for big data archives," in *Proceedings of the Intl.*. *Conf. on Computer Vision, Imaging, and Computer Graphics Theory and Applications (IVAPP)*, vol. 3, 2017, pp. 152–163.
- [10] M. Vogelgesang *et al.*, "High-throughput data acquisition and processing for real-time x-ray imaging," in *Proc. SPIE*, vol. 9967, 2016, pp. 996715–996715-9. DOI: 10.1117/12.2237611.
- [11] J. Amsbaugh *et al.*, "Focal-plane detector system for the katrin experiment," *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, vol. 778, pp. 40–60, 2015. DOI: 10.1016/j.nima.2014.12.116.
- [12] L. Rota *et al.*, "A PCIe DMA architecture for multi-gigabyte per second data transmission," *IEEE Transactions on Nuclear Science*, vol. 62, no. 3, pp. 972–976, 2015. DOI: 10.1109/TNS.2015.2426877.
- [13] A. Shkarin *et al.*, "An open source GPU accelerated framework for flexible algebraic reconstruction at synchrotron light sources," *Fundam. Inform.*, vol. 141, no. 2-3, pp. 259–274, 2015. DOI: 10.3233/FI-2015-1275.
- [14] R. Shkarin *et al.*, "GPU-optimized Direct Fourier method for on-line tomography," *Fundam. Inform.*, vol. 141, no. 2-3, pp. 245–258, 2015. DOI: 10.3233/FI-2015-1274.
- [15] U. Stevanovic *et al.*, "A control system and streaming DAQ platform with image-based trigger for X-ray imaging," *IEEE Transactions on Nuclear Science*, vol. 62, no. 3, pp. 911–918, 2015. DOI: 10.1109/TNS.2015.2425911.
- [16] M. Caselle *et al.*, "Ultrafast streaming camera platform for scientific applications," *IEEE Transactions on Nuclear Science*, vol. 60, no. 5, pp. 3669–3677, 2013. DOI: 10.1109/TNS.2013.2252528.
- [17] M. Vogelgesang et al., "UFO: A scalable GPU-based image processing framework for on-line monitoring," in Proceedings of The 14th IEEE Conference on High Performance Computing and Communication & The 9th IEEE International Conference on Embedded Software and Systems (HPCC-ICESS), ser. HPCC '12, Liverpool, UK, Jun. 2012, pp. 824–829. DOI: 10.1109/HPCC.2012.116.
- [18] S. Chilingaryan *et al.*, "A GPU-based architecture for real-time data assessment at synchrotron experiments," *IEEE Transactions on Nuclear Science*, vol. 58, no. 4, pp. 1447–1455, 2011. DOI: 10.1109/TNS.2011.2141686.
- [19] A. Chilingarian *et al.*, "Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons," *Phys. Rev. D*, vol. 82, p. 043 009, 4 Aug. 2010. DOI: 10.1103/PhysRevD.82.043009.
- [20] S. Chilingaryan *et al.*, "Advanced data extraction infrastructure: Web based system for management of time series data," *Journal of Physics: Conference Series*, vol. 219, no. 4, p. 042 034, Apr. 2010. DOI: 10.1088/1742-6596/219/4/ 042034.
- [21] S. Chilingaryan, "The XMLBench project: Comparison of fast, multi-platform XML libraries," no. 5667, pp. 21–34, 2009.
 DOI: 10.1007/978-3-642-04205-8_4.
- [22] S. Chilingaryan *et al.*, "Advanced data acquisition system for SEVAN," *Advances in Space Research*, vol. 43, no. 4, pp. 717–720, 2009. DOI: 10.1016/j.asr.2008.10.008.
- [23] W. Eppler *et al.*, "New control system aspects for physical experiments," *IEEE Transactions on Nuclear Science*, vol. 51, no. 3, pp. 482–488, 2004. DOI: 10.1109/TNS.2004.828633.
- [24] A. Vardanyan *et al.*, "Fast pattern recognition trigger for atmospheric cherenkov telescopes," in *Proceedings of 27th International Cosmic Ray Conference, Katlenburg-Lindau, Germany*, 2001, pp. 2935–2938.

Selected presentations

	Conferences
Oct 2019	(invited) "Accelerating Remote Visualization of Large Tomographic Data Volumes" at
	Global Innovation Forum, Armenia
Oct 2018	(talk) "Balancing load of GPU subsystems to accelerate image reconstruction in
	parallel beam tomography" at SBAC-PAD 2018 conference, Lyon, France
Okt 2014	(talk) "Computing Infrastructure for Online Monitoring and Control of High-
011 - 01	throughput DAQ Electronics" at 10th PCAPAC conference, Karlsruhe, Germany
Sep 2014	(invited) "UFO – Status and Perspectives of Ultrafast X-Ray Imaging at ANKA" and
50p 2011	<i>"Fast Reconstruction Algorithms for Computed Tomography"</i> at SNI 2014, Germany
Jun 2012	(talk) "A High Throughput Platform for Real-Time X-ray Imaging" and "Advanced
5 dii 2012	<i>Linux PCI Services</i> " at 18th IEEE Real-Time Conference, Berkeley, CA, USA
May 2012	(talk) "A High Performance Platform for Real-Time X-ray Imaging" at GPU
Widy 2012	Technology Conference, San Jose, CA, USA
May 2010	(talk) "A GPU-based Architecture for Real-Time Data Assessment at Synchrotron
Widy 2010	<i>Experiments</i> " at 17th IEEE Real-Time Conference, Lisbon, Portugal
Apr 2009	(talk) "Comparison of fast multi-platform XML Libraries: Results for January 2009"
11pi 2005	at BenchmarX'09 workshop at DASFAA 2009, Brisbane, Australia
Sep 2007	(talk) "Advanced Data Acquisition System for SEVAN" at SEE 2007 Symposium,
00p 2007	Athens, Greece
	Workshops
Mar 2019	(talk) "UFO Cloud: Data-Acquisition-as-a-Service" at Matter and Technologie
	program meeting, Germany
Nov 2018	(talk) "High-Speed Tomography: Fine-tuning back projection for GPU architectures"
	at CAMERA workshop, Berkeley, CA, USA
Nov 2017	(invited) "UFO - A platform for high data rate instrumentation with GPUs" at
	EUCALL GPU/FPGA Workshop at <i>XFEL</i> , Hamburg, Germany
May 2017	(invited) "SHAPe: Scalable and Highly Available Platform for Scientific Data Portals"
	at ARBRA Workshop, Nor-Amberd, Armenia
Apr 2017	(invited) "Tuning tomographic reconstruction for different parallel architectures" at
-	workshop on Real-Time 3D Tomography, CWI, Amsterdam, Netherlands
Jan 2016	(invited) "Performance-oriented instrumentation for high-speed synchrotron imaging"
	at workshop on Large Scale Tomography, Szeged, Hungary
Apr 2012	(invited) "ADEI for Tango" at Tango workshop, MAX-IV, Lund, Sweden
Mar 2012	(talk) "Practical Experience with GPUs for high throughput computing" at
	HDRI/PanData workshop
Mar 2011	(invited) "High Speed Tomography at KIT" at meeting on Tomographic reconstruction
	software, ESRF
Sep 2008	(talk) "Advanced Data Extraction Infrastructure" at FORGES 2008 workshop, Nor-
	Amberd, Armenia
	Seminars
May 2020	(talk) "Real-time reconstruction for synchrotron tomography" at lunch-and-learn
0 0010	session at University of Manchester, UK
Oct 2018	(talk) "Balancing load of GPU subsystems to accelerate back projection for
	synchrotron tomography" at ESRF, Grenoble, France
Apr 2016	(talk) "ADEI: Intelligent visualization and management of time-series data in scientific
	experiments" at Instituto de Física, UNAM, Mexico

- May 2015(talk) "Advanced Algorithms for Tomography" at YerPhI seminar, Yerevan, ArmeniaSep 2013(talk) "Ultrafast X-Ray Imaging of Scientific Processes" at SCI and TPU, Russia