summaryrefslogtreecommitdiffstats
path: root/src/kernels/opencl.cl
blob: ab35011fc2517ede14176ab9c1a20a8b708cb16f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*
 * Copyright (C) 2011-2017 Karlsruhe Institute of Technology
 *
 * This file is part of Ufo.
 *
 * This library is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation, either
 * version 3 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef SEARCH_RADIUS
#define SEARCH_RADIUS   10
#endif

#ifndef PATCH_RADIUS
#define PATCH_RADIUS    3
#endif

#ifndef SIGMA
#define SIGMA           12
#endif

#define flatten(x,y,r,w) ((y-r)*w + (x-r))

/* Compute the distance of two neighbourhood vectors _starting_ from index i
   and j and edge length radius */
float
dist (global float *input,
      int i,
      int j,
      int radius,
      int image_width)
{
    float dist = 0.0f, tmp;
    float wsize = (2.0f * radius + 1.0f);
    wsize *= wsize;

    const int nb_width = 2 * radius + 1;
    const int stride = image_width - nb_width;
    for (int k = 0; k < nb_width; k++, i += stride, j += stride) {
        for (int l = 0; l < nb_width; l++, i++, j++) {
            tmp = input[i] - input[j];
            dist += tmp * tmp;
        }
    }
    return dist / wsize;
}

kernel void
nlm_noise_reduction (global float *input,
                     global float *output)
{
    const int x = get_global_id (0);
    const int y = get_global_id (1);
    const int width = get_global_size (0);
    const int height = get_global_size (1);

    float total_weight = 0.0f;
    float pixel_value = 0.0f;

    /* 
     * Compute the upper left (sx,sy) and lower right (tx, ty) corner points of
     * our search window.
     */
    int r = min (PATCH_RADIUS, min(width - 1 - x, min (height - 1 - y, min (x, y))));
    int sx = max (x - SEARCH_RADIUS, r);
    int sy = max (y - SEARCH_RADIUS, r);
    int tx = min (x + SEARCH_RADIUS, width - 1 - r);
    int ty = min (y + SEARCH_RADIUS, height - 1 - r);

    for (int i = sx; i < tx; i++) {
        for (int j = sy; j < ty; j++) {
            float d = dist (input, flatten(x, y, r, width), flatten (i,j,r,width), r, width);
            float weight = exp (- (SIGMA * SIGMA) * d);
            pixel_value += weight * input[j * width + i];
            total_weight += weight;
        }
    }

    output[y * width + x] = pixel_value / total_weight;
}

kernel void
fix_nan_and_inf (global float *input,
                 global float *output)
{
    const size_t idx = get_global_id (1) * get_global_size (0) + get_global_id (0);
    float data = input[idx];

    if ((isnan (data) || isinf (data)))
        data = 0.0f;

    output[idx] = data;
}

kernel void
absorptivity (global float *input,
              global float *output)
{
    const size_t idx = get_global_id (1) * get_global_size (0) + get_global_id (0);
    output[idx] = -log (input[idx]);
}

kernel void
diff (global float *x,
      global float *y,
      global float *output)
{
    const size_t idx = get_global_id (1) * get_global_size (0) + get_global_id (0);
    output[idx] = x[idx] - y[idx];
}

kernel void
add (global float *x,
     global float *y,
     global float *output)
{
    const size_t idx = get_global_id (1) * get_global_size (0) + get_global_id (0);
    output[idx] = x[idx] + y[idx];
}

kernel void
multiply (global float *x,
          global float *y,
          global float *output)
{
    const size_t idx = get_global_id (1) * get_global_size (0) + get_global_id (0);
    output[idx] = x[idx] * y[idx];
}

kernel void
divide (global float *x,
        global float *y,
        global float *output)
{
    const size_t idx = get_global_id (1) * get_global_size (0) + get_global_id (0);
    output[idx] = x[idx] / y[idx];
}