summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/ccpi/optimisation/operators/LinearOperator.py
blob: 60a4c2a3fb568aef166e5ae149ff6d384b1b3b58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# -*- coding: utf-8 -*-
#  CCP in Tomographic Imaging (CCPi) Core Imaging Library (CIL).

#   Copyright 2017 UKRI-STFC
#   Copyright 2017 University of Manchester

#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at

#   http://www.apache.org/licenses/LICENSE-2.0

#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from ccpi.optimisation.operators import Operator
import numpy


class LinearOperator(Operator):
    '''A Linear Operator that maps from a space X <-> Y'''
    def __init__(self):
        super(LinearOperator, self).__init__()
    def is_linear(self):
        '''Returns if the operator is linear'''
        return True
    def adjoint(self,x, out=None):
        '''returns the adjoint/inverse operation
        
        only available to linear operators'''
        raise NotImplementedError
    
    @staticmethod
    def PowerMethod(operator, iterations, x_init=None):
        '''Power method to calculate iteratively the Lipschitz constant
        
        :param operator: input operator
        :type operator: :code:`LinearOperator`
        :param iterations: number of iterations to run
        :type iteration: int
        :param x_init: starting point for the iteration in the operator domain
        :returns: tuple with: L, list of L at each iteration, the data the iteration worked on.
        '''
        
        # Initialise random
        if x_init is None:
            x0 = operator.domain_geometry().allocate('random')
        else:
            x0 = x_init.copy()
            
        x1 = operator.domain_geometry().allocate()
        y_tmp = operator.range_geometry().allocate()
        s = numpy.zeros(iterations)
        # Loop
        for it in numpy.arange(iterations):
            operator.direct(x0,out=y_tmp)
            operator.adjoint(y_tmp,out=x1)
            x1norm = x1.norm()
            if hasattr(x0, 'squared_norm'):
                s[it] = x1.dot(x0) / x0.squared_norm()
            else:
                x0norm = x0.norm()
                s[it] = x1.dot(x0) / (x0norm * x0norm) 
            x1.multiply((1.0/x1norm), out=x0)
        return numpy.sqrt(s[-1]), numpy.sqrt(s), x0

    def calculate_norm(self, **kwargs):
        '''Returns the norm of the LinearOperator as calculated by the PowerMethod
        
        :param iterations: number of iterations to run
        :type iterations: int, optional, default = 25
        :param x_init: starting point for the iteration in the operator domain
        :type x_init: same type as domain, a subclass of :code:`DataContainer`, optional, None
        :parameter force: forces the recalculation of the norm
        :type force: boolean, default :code:`False`
        '''
        x0 = kwargs.get('x_init', None)
        iterations = kwargs.get('iterations', 25)
        s1, sall, svec = LinearOperator.PowerMethod(self, iterations, x_init=x0)
        return s1

    @staticmethod
    def dot_test(operator, domain_init=None, range_init=None, verbose=False, **kwargs):
        r'''Does a dot linearity test on the operator
        
        Evaluates if the following equivalence holds
        
        .. math::
        
          Ax\times y = y \times A^Tx
        
        The equivalence is tested within a user specified precision

        .. code::
        
          abs(desired-actual) < 1.5 * 10**(-decimal)

        :param operator: operator to test
        :param range_init: optional initialisation container in the operator range 
        :param domain_init: optional initialisation container in the operator domain 
        :returns: boolean, True if the test is passed.
        :param decimal: desired precision
        :type decimal: int, optional, default 4
        '''
        if range_init is None:
            y = operator.range_geometry().allocate('random_int')
        else:
            y = range_init
        if domain_init is None:
            x = operator.domain_geometry().allocate('random_int')
        else:
            x = domain_init
            
        fx = operator.direct(x)
        by = operator.adjoint(y)
        a = fx.dot(y)
        b = by.dot(x)
        if verbose:
            print ('Left hand side  {}, \nRight hand side {}'.format(a, b))
            print ("decimal ", kwargs.get('decimal', 4))
        try:
            numpy.testing.assert_almost_equal(abs((a-b)/a), 0., decimal=kwargs.get('decimal',4))
            return True
        except AssertionError as ae:
            print (ae)
            return False