summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/ccpi/optimisation/operators/FiniteDifferenceOperator.py
blob: 0dd7d4b40975ae4fb9b6cfac257d2d3b35d21f3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# -*- coding: utf-8 -*-
#  CCP in Tomographic Imaging (CCPi) Core Imaging Library (CIL).

#   Copyright 2017 UKRI-STFC
#   Copyright 2017 University of Manchester

#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at

#   http://www.apache.org/licenses/LICENSE-2.0

#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from ccpi.optimisation.operators import LinearOperator
import numpy as np

class FiniteDiff(LinearOperator):
    
    '''Finite Difference Operator:
            
            Computes first-order forward/backward differences 
                     on 2D, 3D, 4D ImageData
                     under Neumann/Periodic boundary conditions

        Order of the Gradient ( ImageGeometry may contain channels ):
                            
            Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x']
            Grad_order = ['channels', 'direction_y', 'direction_x']
            Grad_order = ['direction_z', 'direction_y', 'direction_x']
            Grad_order = ['channels', 'direction_z', 'direction_y', 'direction_x']  
                                        
    
    '''

        
    def __init__(self, gm_domain, gm_range=None, direction=0, bnd_cond = 'Neumann'):

        super(FiniteDiff, self).__init__() 

        self.gm_domain = gm_domain
        self.gm_range = gm_range
        
        self.direction = direction
        self.bnd_cond = bnd_cond
        
        # Domain Geometry = Range Geometry if not stated
        if self.gm_range is None:
            self.gm_range = self.gm_domain
            
        # check direction and "length" of geometry
        if self.direction + 1 > len(self.gm_domain.shape):
            raise ValueError('Gradient directions more than geometry domain')      
        
        #self.voxel_size = kwargs.get('voxel_size',1)
        # this wrongly assumes a homogeneous voxel size
#        self.voxel_size = self.gm_domain.voxel_size_x


    def direct(self, x, out=None):
        
        x_asarr = x.as_array()
        x_sz = len(x.shape)
        outnone = False
        if out is None:
            outnone = True
            ret = self.domain_geometry().allocate()
            outa = ret.as_array()
        else:
            outa = out.as_array()
            outa[:]=0
                  
        ######################## Direct for 2D  ###############################
        if x_sz == 2:
            
            if self.direction == 1:
                
                np.subtract( x_asarr[:,1:], x_asarr[:,0:-1], out = outa[:,0:-1] )
                
                if self.bnd_cond == 'Neumann':
                    pass
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[:,0], x_asarr[:,-1], out = outa[:,-1] )
                else: 
                    raise ValueError('No valid boundary conditions')
                
            if self.direction == 0:
                
                np.subtract( x_asarr[1:], x_asarr[0:-1], out = outa[0:-1,:] )

                if self.bnd_cond == 'Neumann':
                    pass                                        
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[0,:], x_asarr[-1,:], out = outa[-1,:] ) 
                else:    
                    raise ValueError('No valid boundary conditions') 
                    
        ######################## Direct for 3D  ###############################                        
        elif x_sz == 3:
                    
            if self.direction == 0:  
                
                np.subtract( x_asarr[1:,:,:], x_asarr[0:-1,:,:], out = outa[0:-1,:,:] )
                
                if self.bnd_cond == 'Neumann':
                    pass
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[0,:,:], x_asarr[-1,:,:], out = outa[-1,:,:] ) 
                else:    
                    raise ValueError('No valid boundary conditions')                      
                                                             
            if self.direction == 1:
                
                np.subtract( x_asarr[:,1:,:], x_asarr[:,0:-1,:], out = outa[:,0:-1,:] ) 
                
                if self.bnd_cond == 'Neumann':
                    pass
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[:,0,:], x_asarr[:,-1,:], out = outa[:,-1,:] )
                else:    
                    raise ValueError('No valid boundary conditions')                      
                                
             
            if self.direction == 2:
                
                np.subtract( x_asarr[:,:,1:], x_asarr[:,:,0:-1], out = outa[:,:,0:-1] ) 
                
                if self.bnd_cond == 'Neumann':
                    pass
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[:,:,0], x_asarr[:,:,-1], out = outa[:,:,-1] )
                else:    
                    raise ValueError('No valid boundary conditions')  
                    
        ######################## Direct for 4D  ###############################
        elif x_sz == 4:
                    
            if self.direction == 0:                            
                np.subtract( x_asarr[1:,:,:,:], x_asarr[0:-1,:,:,:], out = outa[0:-1,:,:,:] )
                
                if self.bnd_cond == 'Neumann':
                    pass
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[0,:,:,:], x_asarr[-1,:,:,:], out = outa[-1,:,:,:] )
                else:    
                    raise ValueError('No valid boundary conditions') 
                                                
            if self.direction == 1:
                np.subtract( x_asarr[:,1:,:,:], x_asarr[:,0:-1,:,:], out = outa[:,0:-1,:,:] ) 
                
                if self.bnd_cond == 'Neumann':
                    pass
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[:,0,:,:], x_asarr[:,-1,:,:], out = outa[:,-1,:,:] )
                else:    
                    raise ValueError('No valid boundary conditions')                 
                
            if self.direction == 2:
                np.subtract( x_asarr[:,:,1:,:], x_asarr[:,:,0:-1,:], out = outa[:,:,0:-1,:] ) 
                
                if self.bnd_cond == 'Neumann':
                    pass
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[:,:,0,:], x_asarr[:,:,-1,:], out = outa[:,:,-1,:] )
                else:    
                    raise ValueError('No valid boundary conditions')                   
                
            if self.direction == 3:
                np.subtract( x_asarr[:,:,:,1:], x_asarr[:,:,:,0:-1], out = outa[:,:,:,0:-1] )                 

                if self.bnd_cond == 'Neumann':
                    pass
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[:,:,:,0], x_asarr[:,:,:,-1], out = outa[:,:,:,-1] )
                else:    
                    raise ValueError('No valid boundary conditions')                   
                                
        else:
            raise NotImplementedError                
         
#        res = out #/self.voxel_size 
        #return type(x)(out)
        if outnone:
            ret.fill(outa)
            return ret

                    
    def adjoint(self, x, out=None):
                      
        x_asarr = x.as_array()
        x_sz = len(x.shape)
        outnone = False 
        if out is None:
            outnone = True
            ret = self.range_geometry().allocate()
            outa = ret.as_array()
            #out = np.zeros_like(x_asarr)
        else:
            outa = out.as_array()        
            outa[:]=0

        
        ######################## Adjoint for 2D  ###############################
        if x_sz == 2:        
        
            if self.direction == 1:
                
                np.subtract( x_asarr[:,1:], x_asarr[:,0:-1], out = outa[:,1:] )
                
                if self.bnd_cond == 'Neumann':
                    np.subtract( x_asarr[:,0], 0, out = outa[:,0] )
                    np.subtract( -x_asarr[:,-2], 0, out = outa[:,-1] )
                    
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[:,0], x_asarr[:,-1], out = outa[:,0] )                                        
                    
                else:   
                    raise ValueError('No valid boundary conditions') 
                                    
            if self.direction == 0:
                
                np.subtract( x_asarr[1:,:], x_asarr[0:-1,:], out = outa[1:,:] )
                
                if self.bnd_cond == 'Neumann':
                    np.subtract( x_asarr[0,:], 0, out = outa[0,:] )
                    np.subtract( -x_asarr[-2,:], 0, out = outa[-1,:] ) 
                    
                elif self.bnd_cond == 'Periodic':  
                    np.subtract( x_asarr[0,:], x_asarr[-1,:], out = outa[0,:] ) 
                    
                else:   
                    raise ValueError('No valid boundary conditions')     
        
        ######################## Adjoint for 3D  ###############################        
        elif x_sz == 3:                
                
            if self.direction == 0:          
                  
                np.subtract( x_asarr[1:,:,:], x_asarr[0:-1,:,:], out = outa[1:,:,:] )
                
                if self.bnd_cond == 'Neumann':
                    np.subtract( x_asarr[0,:,:], 0, out = outa[0,:,:] )
                    np.subtract( -x_asarr[-2,:,:], 0, out = outa[-1,:,:] )
                elif self.bnd_cond == 'Periodic':                     
                    np.subtract( x_asarr[0,:,:], x_asarr[-1,:,:], out = outa[0,:,:] )
                else:   
                    raise ValueError('No valid boundary conditions')                     
                                    
            if self.direction == 1:
                np.subtract( x_asarr[:,1:,:], x_asarr[:,0:-1,:], out = outa[:,1:,:] )
                
                if self.bnd_cond == 'Neumann':
                    np.subtract( x_asarr[:,0,:], 0, out = outa[:,0,:] )
                    np.subtract( -x_asarr[:,-2,:], 0, out = outa[:,-1,:] )
                elif self.bnd_cond == 'Periodic':                     
                    np.subtract( x_asarr[:,0,:], x_asarr[:,-1,:], out = outa[:,0,:] )
                else:   
                    raise ValueError('No valid boundary conditions')                                 
                
            if self.direction == 2:
                np.subtract( x_asarr[:,:,1:], x_asarr[:,:,0:-1], out = outa[:,:,1:] )
                
                if self.bnd_cond == 'Neumann':
                    np.subtract( x_asarr[:,:,0], 0, out = outa[:,:,0] ) 
                    np.subtract( -x_asarr[:,:,-2], 0, out = outa[:,:,-1] ) 
                elif self.bnd_cond == 'Periodic':                     
                    np.subtract( x_asarr[:,:,0], x_asarr[:,:,-1], out = outa[:,:,0] )
                else:   
                    raise ValueError('No valid boundary conditions')                                 
        
        ######################## Adjoint for 4D  ###############################        
        elif x_sz == 4:                
                
            if self.direction == 0:                            
                np.subtract( x_asarr[1:,:,:,:], x_asarr[0:-1,:,:,:], out = outa[1:,:,:,:] )
                
                if self.bnd_cond == 'Neumann':
                    np.subtract( x_asarr[0,:,:,:], 0, out = outa[0,:,:,:] )
                    np.subtract( -x_asarr[-2,:,:,:], 0, out = outa[-1,:,:,:] )
                    
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[0,:,:,:], x_asarr[-1,:,:,:], out = outa[0,:,:,:] )
                else:    
                    raise ValueError('No valid boundary conditions') 
                                
            if self.direction == 1:
                np.subtract( x_asarr[:,1:,:,:], x_asarr[:,0:-1,:,:], out = outa[:,1:,:,:] )
                
                if self.bnd_cond == 'Neumann':
                   np.subtract( x_asarr[:,0,:,:], 0, out = outa[:,0,:,:] )
                   np.subtract( -x_asarr[:,-2,:,:], 0, out = outa[:,-1,:,:] )
                    
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[:,0,:,:], x_asarr[:,-1,:,:], out = outa[:,0,:,:] )
                else:    
                    raise ValueError('No valid boundary conditions') 
                    
                
            if self.direction == 2:
                np.subtract( x_asarr[:,:,1:,:], x_asarr[:,:,0:-1,:], out = outa[:,:,1:,:] )
                
                if self.bnd_cond == 'Neumann':
                    np.subtract( x_asarr[:,:,0,:], 0, out = outa[:,:,0,:] ) 
                    np.subtract( -x_asarr[:,:,-2,:], 0, out = outa[:,:,-1,:] ) 
                    
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[:,:,0,:], x_asarr[:,:,-1,:], out = outa[:,:,0,:] )
                else:    
                    raise ValueError('No valid boundary conditions')                 
                
            if self.direction == 3:
                np.subtract( x_asarr[:,:,:,1:], x_asarr[:,:,:,0:-1], out = outa[:,:,:,1:] )
                
                if self.bnd_cond == 'Neumann':
                    np.subtract( x_asarr[:,:,:,0], 0, out = outa[:,:,:,0] ) 
                    np.subtract( -x_asarr[:,:,:,-2], 0, out = outa[:,:,:,-1] )   
                    
                elif self.bnd_cond == 'Periodic':
                    np.subtract( x_asarr[:,:,:,0], x_asarr[:,:,:,-1], out = outa[:,:,:,0] )
                else:    
                    raise ValueError('No valid boundary conditions')                  
                              
        else:
            raise NotImplementedError
            
        outa *= -1 #/self.voxel_size
        if outnone:
            ret.fill(outa)
            return ret
        #else:
        #    out.fill(outa)
            
    def range_geometry(self):
        
        '''
        
            Returns the range_geometry of FiniteDiff
        
        '''
        
        return self.gm_range
    
    def domain_geometry(self):
        
        '''
        
            Returns the domain_geometry of FiniteDiff
        
        '''        
        return self.gm_domain


if __name__ == '__main__':
    
    from ccpi.framework import ImageGeometry
    import numpy
    
    N, M = 2, 3

    ig = ImageGeometry(N, M)


    FD = FiniteDiff(ig, direction = 1, bnd_cond = 'Neumann')
    u = FD.domain_geometry().allocate('random_int')
        
    res = FD.domain_geometry().allocate()
    res1 = FD.range_geometry().allocate()
    FD.direct(u, out=res)

    z = FD.direct(u)    
#    print(z.as_array(), res.as_array())

    for i in range(10):
#        
        z1 = FD.direct(u) 
        FD.direct(u, out=res)
        
        u = ig.allocate('random_int')
        res = u
        z1  = u
        numpy.testing.assert_array_almost_equal(z1.as_array(), \
                                                res.as_array(), decimal=4)
        
#        print(z1.as_array(), res.as_array())
        z2 = FD.adjoint(z1) 
        FD.adjoint(z1, out=res1)  
        numpy.testing.assert_array_almost_equal(z2.as_array(), \
                                                res1.as_array(), decimal=4)        
        
        
        

        
        
        
    
#    w = G.range_geometry().allocate('random_int')