summaryrefslogtreecommitdiffstats
path: root/src/Core/regularisers_CPU/LLT_ROF_core.c
blob: e097c90b3bdf99fb7fc4584aa5eba288751791e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
 * This work is part of the Core Imaging Library developed by
 * Visual Analytics and Imaging System Group of the Science Technology
 * Facilities Council, STFC
 *
 * Copyright 2017 Daniil Kazantsev
 * Copyright 2017 Srikanth Nagella, Edoardo Pasca
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * http://www.apache.org/licenses/LICENSE-2.0
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "LLT_ROF_core.h"
#define EPS_LLT 1.0e-12
#define EPS_ROF 1.0e-12
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define MIN(x, y) (((x) < (y)) ? (x) : (y))

/*sign function*/
int signLLT(float x) {
    return (x > 0) - (x < 0);
}

/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model [1] combined with Rudin-Osher-Fatemi [2] TV regularisation penalty.
 *
 * This penalty can deliver visually pleasant piecewise-smooth recovery if regularisation parameters are selected well.
 * The rule of thumb for selection is to start with lambdaLLT = 0 (just the ROF-TV model) and then proceed to increase
 * lambdaLLT starting with smaller values.
 *
 * Input Parameters:
 * 1. U0 - original noise image/volume
 * 2. lambdaROF - ROF-related regularisation parameter
 * 3. lambdaLLT - LLT-related regularisation parameter
 * 4. tau - time-marching step
 * 5. iter - iterations number (for both models)
 * 6. eplsilon: tolerance constant
 *
 * Output:
 * [1] Filtered/regularized image/volume
 * [2] Information vector which contains [iteration no., reached tolerance]
 *
 * References:
 * [1] Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12), pp.1579-1590.
 * [2] Rudin, Osher, Fatemi, "Nonlinear Total Variation based noise removal algorithms"
 */

float LLT_ROF_CPU_main(float *Input, float *Output, float *infovector, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ)
{
    long DimTotal;
    int ll, j;
    float re, re1;
    re = 0.0f; re1 = 0.0f;
    int count = 0;
    
    float *D1_LLT=NULL, *D2_LLT=NULL, *D3_LLT=NULL, *D1_ROF=NULL, *D2_ROF=NULL, *D3_ROF=NULL, *Output_prev=NULL;
    DimTotal = (long)(dimX*dimY*dimZ);
    
    D1_ROF = calloc(DimTotal, sizeof(float));
    D2_ROF = calloc(DimTotal, sizeof(float));
    D3_ROF = calloc(DimTotal, sizeof(float));
    
    D1_LLT = calloc(DimTotal, sizeof(float));
    D2_LLT = calloc(DimTotal, sizeof(float));
    D3_LLT = calloc(DimTotal, sizeof(float));
    
    copyIm(Input, Output, (long)(dimX), (long)(dimY), (long)(dimZ)); /* initialize  */
    if (epsil != 0.0f) Output_prev = calloc(DimTotal, sizeof(float));
    
    for(ll = 0; ll < iterationsNumb; ll++) {
        if ((epsil != 0.0f) && (ll % 5 == 0)) copyIm(Output, Output_prev, (long)(dimX), (long)(dimY), (long)(dimZ));
        
        if (dimZ == 1) {
            /* 2D case */
            /****************ROF******************/
            /* calculate first-order differences */
            D1_func_ROF(Output, D1_ROF, (long)(dimX), (long)(dimY), 1l);
            D2_func_ROF(Output, D2_ROF, (long)(dimX), (long)(dimY), 1l);
            /****************LLT******************/
            /* estimate second-order derrivatives */
            der2D_LLT(Output, D1_LLT, D2_LLT, (long)(dimX), (long)(dimY), 1l);
            /* Joint update for ROF and LLT models */
            Update2D_LLT_ROF(Input, Output, D1_LLT, D2_LLT, D1_ROF, D2_ROF, lambdaROF, lambdaLLT, tau, (long)(dimX), (long)(dimY), 1l);
        }
        else {
            /* 3D case */
            /* calculate first-order differences */
            D1_func_ROF(Output, D1_ROF, (long)(dimX), (long)(dimY), (long)(dimZ));
            D2_func_ROF(Output, D2_ROF, (long)(dimX), (long)(dimY), (long)(dimZ));
            D3_func_ROF(Output, D3_ROF, (long)(dimX), (long)(dimY), (long)(dimZ));
            /****************LLT******************/
            /* estimate second-order derrivatives */
            der3D_LLT(Output, D1_LLT, D2_LLT, D3_LLT,(long)(dimX), (long)(dimY), (long)(dimZ));
            /* Joint update for ROF and LLT models */
            Update3D_LLT_ROF(Input, Output, D1_LLT, D2_LLT, D3_LLT, D1_ROF, D2_ROF, D3_ROF, lambdaROF, lambdaLLT, tau, (long)(dimX), (long)(dimY), (long)(dimZ));
        }
        
        /* check early stopping criteria */
        if ((epsil != 0.0f) && (ll % 5 == 0)) {
            re = 0.0f; re1 = 0.0f;
            for(j=0; j<DimTotal; j++)
            {
                re += powf(Output[j] - Output_prev[j],2);
                re1 += powf(Output[j],2);
            }
            re = sqrtf(re)/sqrtf(re1);
            if (re < epsil)  count++;
            if (count > 3) break;
        }
        
    } /*end of iterations*/
    free(D1_LLT);free(D2_LLT);free(D3_LLT);
    free(D1_ROF);free(D2_ROF);free(D3_ROF);
    if (epsil != 0.0f) free(Output_prev);
    
    /*adding info into info_vector */
    infovector[0] = (float)(ll);  /*iterations number (if stopped earlier based on tolerance)*/
    infovector[1] = re;  /* reached tolerance */
    return 0;
}

/*************************************************************************/
/**********************LLT-related functions *****************************/
/*************************************************************************/
float der2D_LLT(float *U, float *D1, float *D2, long dimX, long dimY, long dimZ)
{
    long i, j, index, i_p, i_m, j_m, j_p;
    float dxx, dyy, denom_xx, denom_yy;
#pragma omp parallel for shared(U,D1,D2) private(i, j, index, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy)
    for (j = 0; j<dimY; j++) {
        for (i = 0; i<dimX; i++) {
            index = j*dimX+i;
            /* symmetric boundary conditions (Neuman) */
            i_p = i + 1; if (i_p == dimX) i_p = i - 1;
            i_m = i - 1; if (i_m < 0) i_m = i + 1;
            j_p = j + 1; if (j_p == dimY) j_p = j - 1;
            j_m = j - 1; if (j_m < 0) j_m = j + 1;
            
            dxx = U[j*dimX+i_p] - 2.0f*U[index] + U[j*dimX+i_m];
            dyy = U[j_p*dimX+i] - 2.0f*U[index] + U[j_m*dimX+i];
            
            denom_xx = fabs(dxx) + EPS_LLT;
            denom_yy = fabs(dyy) + EPS_LLT;
            
            D1[index] = dxx / denom_xx;
            D2[index] = dyy / denom_yy;
        }
    }
    return 1;
}

float der3D_LLT(float *U, float *D1, float *D2, float *D3, long dimX, long dimY, long dimZ)
{
    long i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, index;
    float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz;
#pragma omp parallel for shared(U,D1,D2,D3) private(i, j, index, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz)
    for (k = 0; k<dimZ; k++) {
        for (j = 0; j<dimY; j++) {
            for (i = 0; i<dimX; i++) {
                /* symmetric boundary conditions (Neuman) */
                i_p = i + 1; if (i_p == dimX) i_p = i - 1;
                i_m = i - 1; if (i_m < 0) i_m = i + 1;
                j_p = j + 1; if (j_p == dimY) j_p = j - 1;
                j_m = j - 1; if (j_m < 0) j_m = j + 1;
                k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
                k_m = k - 1; if (k_m < 0) k_m = k + 1;
                
                index = (dimX*dimY)*k + j*dimX+i;
                
                dxx = U[(dimX*dimY)*k + j*dimX+i_p] - 2.0f*U[index] + U[(dimX*dimY)*k + j*dimX+i_m];
                dyy = U[(dimX*dimY)*k + j_p*dimX+i] - 2.0f*U[index] + U[(dimX*dimY)*k + j_m*dimX+i];
                dzz = U[(dimX*dimY)*k_p + j*dimX+i] - 2.0f*U[index] + U[(dimX*dimY)*k_m + j*dimX+i];
                
                denom_xx = fabs(dxx) + EPS_LLT;
                denom_yy = fabs(dyy) + EPS_LLT;
                denom_zz = fabs(dzz) + EPS_LLT;
                
                D1[index] = dxx / denom_xx;
                D2[index] = dyy / denom_yy;
                D3[index] = dzz / denom_zz;
            }
        }
    }
    return 1;
}

/*************************************************************************/
/**********************ROF-related functions *****************************/
/*************************************************************************/

/* calculate differences 1 */
float D1_func_ROF(float *A, float *D1, long dimX, long dimY, long dimZ)
{
    float NOMx_1, NOMy_1, NOMy_0, NOMz_1, NOMz_0, denom1, denom2,denom3, T1;
    long i,j,k,i1,i2,k1,j1,j2,k2,index;
    
    if (dimZ > 1) {
#pragma omp parallel for shared (A, D1, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2, NOMx_1,NOMy_1,NOMy_0,NOMz_1,NOMz_0,denom1,denom2,denom3,T1)
        for (k = 0; k<dimZ; k++) {
            for (j = 0; j<dimY; j++) {
                for (i = 0; i<dimX; i++) {
                    index = (dimX*dimY)*k + j*dimX+i;
                    /* symmetric boundary conditions (Neuman) */
                    i1 = i + 1; if (i1 >= dimX) i1 = i-1;
                    i2 = i - 1; if (i2 < 0) i2 = i+1;
                    j1 = j + 1; if (j1 >= dimY) j1 = j-1;
                    j2 = j - 1; if (j2 < 0) j2 = j+1;
                    k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
                    k2 = k - 1; if (k2 < 0) k2 = k+1;
                    
                    /* Forward-backward differences */
                    NOMx_1 = A[(dimX*dimY)*k + j1*dimX + i] - A[index]; /* x+ */
                    NOMy_1 = A[(dimX*dimY)*k + j*dimX + i1] - A[index]; /* y+ */
                    /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */  /* x- */
                    NOMy_0 = A[index] - A[(dimX*dimY)*k + j*dimX + i2]; /* y- */
                    
                    NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */
                    NOMz_0 = A[index] - A[(dimX*dimY)*k2 + j*dimX + i]; /* z- */
                    
                    
                    denom1 = NOMx_1*NOMx_1;
                    denom2 = 0.5f*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0)));
                    denom2 = denom2*denom2;
                    denom3 = 0.5f*(signLLT(NOMz_1) + signLLT(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0)));
                    denom3 = denom3*denom3;
                    T1 = sqrt(denom1 + denom2 + denom3 + EPS_ROF);
                    D1[index] = NOMx_1/T1;
                }}}
    }
    else {
#pragma omp parallel for shared (A, D1, dimX, dimY) private(i, j, i1, j1, i2, j2,NOMx_1,NOMy_1,NOMy_0,denom1,denom2,T1,index)
        for(j=0; j<dimY; j++) {
            for(i=0; i<dimX; i++) {
                index = j*dimX+i;
                /* symmetric boundary conditions (Neuman) */
                i1 = i + 1; if (i1 >= dimX) i1 = i-1;
                i2 = i - 1; if (i2 < 0) i2 = i+1;
                j1 = j + 1; if (j1 >= dimY) j1 = j-1;
                j2 = j - 1; if (j2 < 0) j2 = j+1;
                
                /* Forward-backward differences */
                NOMx_1 = A[j1*dimX + i] - A[index]; /* x+ */
                NOMy_1 = A[j*dimX + i1] - A[index]; /* y+ */
                /*NOMx_0 = (A[(i)*dimY + j] - A[(i2)*dimY + j]); */ /* x- */
                NOMy_0 = A[index] - A[(j)*dimX + i2]; /* y- */
                
                denom1 = NOMx_1*NOMx_1;
                denom2 = 0.5f*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0)));
                denom2 = denom2*denom2;
                T1 = sqrtf(denom1 + denom2 + EPS_ROF);
                D1[index] = NOMx_1/T1;
            }}
    }
    return *D1;
}
/* calculate differences 2 */
float D2_func_ROF(float *A, float *D2, long dimX, long dimY, long dimZ)
{
    float NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2;
    long i,j,k,i1,i2,k1,j1,j2,k2,index;
    
    if (dimZ > 1) {
#pragma omp parallel for shared (A, D2, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2,  NOMx_1, NOMy_1, NOMx_0, NOMz_1, NOMz_0, denom1, denom2, denom3, T2)
        for (k = 0; k<dimZ; k++) {
            for (j = 0; j<dimY; j++) {
                for (i = 0; i<dimX; i++) {
                    index = (dimX*dimY)*k + j*dimX+i;
                    /* symmetric boundary conditions (Neuman) */
                    i1 = i + 1; if (i1 >= dimX) i1 = i-1;
                    i2 = i - 1; if (i2 < 0) i2 = i+1;
                    j1 = j + 1; if (j1 >= dimY) j1 = j-1;
                    j2 = j - 1; if (j2 < 0) j2 = j+1;
                    k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
                    k2 = k - 1; if (k2 < 0) k2 = k+1;
                    
                    
                    /* Forward-backward differences */
                    NOMx_1 = A[(dimX*dimY)*k + (j1)*dimX + i] - A[index]; /* x+ */
                    NOMy_1 = A[(dimX*dimY)*k + (j)*dimX + i1] - A[index]; /* y+ */
                    NOMx_0 = A[index] - A[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */
                    NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */
                    NOMz_0 = A[index] - A[(dimX*dimY)*k2 + (j)*dimX + i]; /* z- */
                    
                    
                    denom1 = NOMy_1*NOMy_1;
                    denom2 = 0.5f*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0)));
                    denom2 = denom2*denom2;
                    denom3 = 0.5f*(signLLT(NOMz_1) + signLLT(NOMz_0))*(MIN(fabs(NOMz_1),fabs(NOMz_0)));
                    denom3 = denom3*denom3;
                    T2 = sqrtf(denom1 + denom2 + denom3 + EPS_ROF);
                    D2[index] = NOMy_1/T2;
                }}}
    }
    else {
#pragma omp parallel for shared (A, D2, dimX, dimY) private(i, j, i1, j1, i2, j2, NOMx_1,NOMy_1,NOMx_0,denom1,denom2,T2,index)
        for(j=0; j<dimY; j++) {
            for(i=0; i<dimX; i++) {
                index = j*dimX+i;
                /* symmetric boundary conditions (Neuman) */
                i1 = i + 1; if (i1 >= dimX) i1 = i-1;
                i2 = i - 1; if (i2 < 0) i2 = i+1;
                j1 = j + 1; if (j1 >= dimY) j1 = j-1;
                j2 = j - 1; if (j2 < 0) j2 = j+1;
                
                /* Forward-backward differences */
                NOMx_1 = A[j1*dimX + i] - A[index]; /* x+ */
                NOMy_1 = A[j*dimX + i1] - A[index]; /* y+ */
                NOMx_0 = A[index] - A[j2*dimX + i]; /* x- */
                /*NOMy_0 = A[(i)*dimY + j] - A[(i)*dimY + j2]; */  /* y- */
                
                denom1 = NOMy_1*NOMy_1;
                denom2 = 0.5f*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0)));
                denom2 = denom2*denom2;
                T2 = sqrtf(denom1 + denom2 + EPS_ROF);
                D2[index] = NOMy_1/T2;
            }}
    }
    return *D2;
}

/* calculate differences 3 */
float D3_func_ROF(float *A, float *D3, long dimX, long dimY, long dimZ)
{
    float NOMx_1, NOMy_1, NOMx_0, NOMy_0, NOMz_1, denom1, denom2, denom3, T3;
    long index,i,j,k,i1,i2,k1,j1,j2,k2;
    
#pragma omp parallel for shared (A, D3, dimX, dimY, dimZ) private(index, i, j, k, i1, j1, k1, i2, j2, k2,  NOMx_1, NOMy_1, NOMy_0, NOMx_0, NOMz_1, denom1, denom2, denom3, T3)
    for (k = 0; k<dimZ; k++) {
        for (j = 0; j<dimY; j++) {
            for (i = 0; i<dimX; i++) {
                index = (dimX*dimY)*k + j*dimX+i;
                /* symmetric boundary conditions (Neuman) */
                i1 = i + 1; if (i1 >= dimX) i1 = i-1;
                i2 = i - 1; if (i2 < 0) i2 = i+1;
                j1 = j + 1; if (j1 >= dimY) j1 = j-1;
                j2 = j - 1; if (j2 < 0) j2 = j+1;
                k1 = k + 1; if (k1 >= dimZ) k1 = k-1;
                k2 = k - 1; if (k2 < 0) k2 = k+1;
                
                /* Forward-backward differences */
                NOMx_1 = A[(dimX*dimY)*k + (j1)*dimX + i] - A[index]; /* x+ */
                NOMy_1 = A[(dimX*dimY)*k + (j)*dimX + i1] - A[index]; /* y+ */
                NOMy_0 = A[index] - A[(dimX*dimY)*k + (j)*dimX + i2]; /* y- */
                NOMx_0 = A[index] - A[(dimX*dimY)*k + (j2)*dimX + i]; /* x- */
                NOMz_1 = A[(dimX*dimY)*k1 + j*dimX + i] - A[index]; /* z+ */
                /*NOMz_0 = A[(dimX*dimY)*k + (i)*dimY + j] - A[(dimX*dimY)*k2 + (i)*dimY + j]; */ /* z- */
                
                denom1 = NOMz_1*NOMz_1;
                denom2 = 0.5f*(signLLT(NOMx_1) + signLLT(NOMx_0))*(MIN(fabs(NOMx_1),fabs(NOMx_0)));
                denom2 = denom2*denom2;
                denom3 = 0.5f*(signLLT(NOMy_1) + signLLT(NOMy_0))*(MIN(fabs(NOMy_1),fabs(NOMy_0)));
                denom3 = denom3*denom3;
                T3 = sqrtf(denom1 + denom2 + denom3 + EPS_ROF);
                D3[index] = NOMz_1/T3;
            }}}
    return *D3;
}

/*************************************************************************/
/**********************ROF-LLT-related functions *************************/
/*************************************************************************/

float Update2D_LLT_ROF(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D1_ROF, float *D2_ROF, float lambdaROF, float lambdaLLT, float tau, long dimX, long dimY, long dimZ)
{
    long i, j, index, i_p, i_m, j_m, j_p;
    float div, laplc, dxx, dyy, dv1, dv2;
#pragma omp parallel for shared(U,U0) private(i, j, index, i_p, i_m, j_m, j_p, laplc, div, dxx, dyy, dv1, dv2)
    for (j = 0; j<dimY; j++) {
        for (i = 0; i<dimX; i++) {
            index = j*dimX+i;
            /* symmetric boundary conditions (Neuman) */
            i_p = i + 1; if (i_p == dimX) i_p = i - 1;
            i_m = i - 1; if (i_m < 0) i_m = i + 1;
            j_p = j + 1; if (j_p == dimY) j_p = j - 1;
            j_m = j - 1; if (j_m < 0) j_m = j + 1;
            
            /*LLT-related part*/
            dxx = D1_LLT[j*dimX+i_p] - 2.0f*D1_LLT[index] + D1_LLT[j*dimX+i_m];
            dyy = D2_LLT[j_p*dimX+i] - 2.0f*D2_LLT[index] + D2_LLT[j_m*dimX+i];
            laplc = dxx + dyy; /*build Laplacian*/
            
            /*ROF-related part*/
            dv1 = D1_ROF[index] - D1_ROF[j_m*dimX + i];
            dv2 = D2_ROF[index] - D2_ROF[j*dimX + i_m];
            div = dv1 + dv2; /*build Divirgent*/
            
            /*combine all into one cost function to minimise */
            U[index] += tau*(lambdaROF*(div) - lambdaLLT*(laplc) - (U[index] - U0[index]));
        }
    }
    return *U;
}

float Update3D_LLT_ROF(float *U0, float *U, float *D1_LLT, float *D2_LLT, float *D3_LLT, float *D1_ROF, float *D2_ROF, float *D3_ROF, float lambdaROF, float lambdaLLT, float tau, long dimX, long dimY, long dimZ)
{
    long i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, index;
    float div, laplc, dxx, dyy, dzz, dv1, dv2, dv3;
#pragma omp parallel for shared(U,U0) private(i, j, k, index, i_p, i_m, j_m, j_p, k_p, k_m, laplc, div, dxx, dyy, dzz, dv1, dv2, dv3)
    for (k = 0; k<dimZ; k++) {
        for (j = 0; j<dimY; j++) {
            for (i = 0; i<dimX; i++) {
                /* symmetric boundary conditions (Neuman) */
                i_p = i + 1; if (i_p == dimX) i_p = i - 1;
                i_m = i - 1; if (i_m < 0) i_m = i + 1;
                j_p = j + 1; if (j_p == dimY) j_p = j - 1;
                j_m = j - 1; if (j_m < 0) j_m = j + 1;
                k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
                k_m = k - 1; if (k_m < 0) k_m = k + 1;
                
                index = (dimX*dimY)*k + j*dimX+i;
                
                /*LLT-related part*/
                dxx = D1_LLT[(dimX*dimY)*k + j*dimX+i_p] - 2.0f*D1_LLT[index] + D1_LLT[(dimX*dimY)*k + j*dimX+i_m];
                dyy = D2_LLT[(dimX*dimY)*k + j_p*dimX+i] - 2.0f*D2_LLT[index] + D2_LLT[(dimX*dimY)*k + j_m*dimX+i];
                dzz = D3_LLT[(dimX*dimY)*k_p + j*dimX+i] - 2.0f*D3_LLT[index] + D3_LLT[(dimX*dimY)*k_m + j*dimX+i];
                laplc = dxx + dyy + dzz; /*build Laplacian*/
                
                /*ROF-related part*/
                dv1 = D1_ROF[index] - D1_ROF[(dimX*dimY)*k + j_m*dimX+i];
                dv2 = D2_ROF[index] - D2_ROF[(dimX*dimY)*k + j*dimX+i_m];
                dv3 = D3_ROF[index] - D3_ROF[(dimX*dimY)*k_m + j*dimX+i];
                div = dv1 + dv2 + dv3; /*build Divirgent*/
                
                /*combine all into one cost function to minimise */
                U[index] += tau*(lambdaROF*(div) - lambdaLLT*(laplc) - (U[index] - U0[index]));
            }
        }
    }
    return *U;
}