summaryrefslogtreecommitdiffstats
path: root/src/Core/regularisers_CPU/TGV_core.c
blob: 3f917dee4bec22db512e9160c544efd81397e41c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/*
 * This work is part of the Core Imaging Library developed by
 * Visual Analytics and Imaging System Group of the Science Technology
 * Facilities Council, STFC
 *
 * Copyright 2019 Daniil Kazantsev
 * Copyright 2019 Srikanth Nagella, Edoardo Pasca
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * http://www.apache.org/licenses/LICENSE-2.0
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "TGV_core.h"

/* C-OMP implementation of Primal-Dual denoising method for
 * Total Generilized Variation (TGV)-L2 model [1] (2D/3D case)
 *
 * Input Parameters:
 * 1. Noisy image/volume (2D/3D)
 * 2. lambda - regularisation parameter
 * 3. parameter to control the first-order term (alpha1)
 * 4. parameter to control the second-order term (alpha0)
 * 5. Number of Chambolle-Pock (Primal-Dual) iterations
 * 6. Lipshitz constant (default is 12)
 * 7. eplsilon: tolerance constant
 *
 * Output:
 * [1] Filtered/regularized image/volume
 * [2] Information vector which contains [iteration no., reached tolerance]
 *
 * References:
 * [1] K. Bredies "Total Generalized Variation"
 *
 */

float TGV_main(float *U0, float *U, float *infovector, float lambda, float alpha1, float alpha0, int iter, float L2, float epsil, int dimX, int dimY, int dimZ)
{
    long DimTotal;
    int ll, j;
    float re, re1;
    re = 0.0f; re1 = 0.0f;
    int count = 0;
    float *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, tau, sigma;
    
    DimTotal = (long)(dimX*dimY*dimZ);
    copyIm(U0, U, (long)(dimX), (long)(dimY), (long)(dimZ)); /* initialize */
    tau = pow(L2,-0.5);
    sigma = pow(L2,-0.5);
    
    /* dual variables */
    P1 = calloc(DimTotal, sizeof(float));
    P2 = calloc(DimTotal, sizeof(float));
    
    Q1 = calloc(DimTotal, sizeof(float));
    Q2 = calloc(DimTotal, sizeof(float));
    Q3 = calloc(DimTotal, sizeof(float));
    
    U_old = calloc(DimTotal, sizeof(float));
    
    V1 = calloc(DimTotal, sizeof(float));
    V1_old = calloc(DimTotal, sizeof(float));
    V2 = calloc(DimTotal, sizeof(float));
    V2_old = calloc(DimTotal, sizeof(float));
    
    if (dimZ == 1) {
        /*2D case*/
        
        /* Primal-dual iterations begin here */
        for(ll = 0; ll < iter; ll++) {
            
            /* Calculate Dual Variable P */
            DualP_2D(U, V1, V2, P1, P2, (long)(dimX), (long)(dimY), sigma);
            
            /*Projection onto convex set for P*/
            ProjP_2D(P1, P2, (long)(dimX), (long)(dimY), alpha1);
            
            /* Calculate Dual Variable Q */
            DualQ_2D(V1, V2, Q1, Q2, Q3, (long)(dimX), (long)(dimY), sigma);
            
            /*Projection onto convex set for Q*/
            ProjQ_2D(Q1, Q2, Q3, (long)(dimX), (long)(dimY), alpha0);
            
            /*saving U into U_old*/
            copyIm(U, U_old, (long)(dimX), (long)(dimY), 1l);
            
            /*adjoint operation  -> divergence and projection of P*/
            DivProjP_2D(U, U0, P1, P2, (long)(dimX), (long)(dimY), lambda, tau);
            
            /*get updated solution U*/
            newU(U, U_old, (long)(dimX), (long)(dimY));
            
            /*saving V into V_old*/
            copyIm(V1, V1_old, (long)(dimX), (long)(dimY), 1l);
            copyIm(V2, V2_old, (long)(dimX), (long)(dimY), 1l);
            
            /* upd V*/
            UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, (long)(dimX), (long)(dimY), tau);
            
            /*get new V*/
            newU(V1, V1_old, (long)(dimX), (long)(dimY));
            newU(V2, V2_old, (long)(dimX), (long)(dimY));
            
            /* check early stopping criteria */
            if ((epsil != 0.0f)  && (ll % 5 == 0)) {
                re = 0.0f; re1 = 0.0f;
                for(j=0; j<DimTotal; j++)
                {
                    re += powf(U[j] - U_old[j],2);
                    re1 += powf(U[j],2);
                }
                re = sqrtf(re)/sqrtf(re1);
                if (re < epsil)  count++;
                if (count > 3) break;
            }
        } /*end of iterations*/
    }
    else {
        /*3D case*/
        float *P3, *Q4, *Q5, *Q6, *V3, *V3_old;
        
        P3 = calloc(DimTotal, sizeof(float));
        Q4 = calloc(DimTotal, sizeof(float));
        Q5 = calloc(DimTotal, sizeof(float));
        Q6 = calloc(DimTotal, sizeof(float));
        V3 = calloc(DimTotal, sizeof(float));
        V3_old = calloc(DimTotal, sizeof(float));
        
        /* Primal-dual iterations begin here */
        for(ll = 0; ll < iter; ll++) {
            
            /* Calculate Dual Variable P */
            DualP_3D(U, V1, V2, V3, P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), sigma);
            
            /*Projection onto convex set for P*/
            ProjP_3D(P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), alpha1);
            
            /* Calculate Dual Variable Q */
            DualQ_3D(V1, V2, V3, Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), sigma);
            
            /*Projection onto convex set for Q*/
            ProjQ_3D(Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), alpha0);
            
            /*saving U into U_old*/
            copyIm(U, U_old, (long)(dimX), (long)(dimY), (long)(dimZ));
            
            /*adjoint operation  -> divergence and projection of P*/
            DivProjP_3D(U, U0, P1, P2, P3, (long)(dimX), (long)(dimY), (long)(dimZ), lambda, tau);
            
            /*get updated solution U*/
            newU3D(U, U_old, (long)(dimX), (long)(dimY), (long)(dimZ));
            
            /*saving V into V_old*/
            copyIm_3Ar(V1, V2, V3, V1_old, V2_old, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ));
            
            /* upd V*/
            UpdV_3D(V1, V2, V3, P1, P2, P3, Q1, Q2, Q3, Q4, Q5, Q6, (long)(dimX), (long)(dimY), (long)(dimZ), tau);
            
            /*get new V*/
            newU3D_3Ar(V1, V2, V3, V1_old, V2_old, V3_old, (long)(dimX), (long)(dimY), (long)(dimZ));
            
            /* check early stopping criteria */
            if ((epsil != 0.0f)  && (ll % 5 == 0)) {
                re = 0.0f; re1 = 0.0f;
                for(j=0; j<DimTotal; j++)
                {
                    re += powf(U[j] - U_old[j],2);
                    re1 += powf(U[j],2);
                }
                re = sqrtf(re)/sqrtf(re1);
                if (re < epsil)  count++;
                if (count > 3) break;
            }
            
        } /*end of iterations*/
        free(P3);free(Q4);free(Q5);free(Q6);free(V3);free(V3_old);
    }
    
    /*freeing*/
    free(P1);free(P2);free(Q1);free(Q2);free(Q3);free(U_old);
    free(V1);free(V2);free(V1_old);free(V2_old);
    
    /*adding info into info_vector */
    infovector[0] = (float)(ll);  /*iterations number (if stopped earlier based on tolerance)*/
    infovector[1] = re;  /* reached tolerance */
    
    return 0;
}

/********************************************************************/
/***************************2D Functions*****************************/
/********************************************************************/
/*Calculating dual variable P (using forward differences)*/
float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, long dimX, long dimY, float sigma)
{
    long i,j, index;
#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j,index)
    for(j=0; j<dimY; j++) {
        for(i=0; i<dimX; i++) {
            index = j*dimX+i;
            /* symmetric boundary conditions (Neuman) */
            if (i == dimX-1) P1[index] += sigma*(-V1[index]);
            else P1[index] += sigma*((U[j*dimX+(i+1)] - U[index])  - V1[index]);
            if (j == dimY-1) P2[index] += sigma*(-V2[index]);
            else  P2[index] += sigma*((U[(j+1)*dimX+i] - U[index])  - V2[index]);
            
        }}
    return 1;
}
/*Projection onto convex set for P*/
float ProjP_2D(float *P1, float *P2, long dimX, long dimY, float alpha1)
{
    float grad_magn;
    long i,j,index;
#pragma omp parallel for shared(P1,P2) private(i,j,index,grad_magn)
    for(j=0; j<dimY; j++) {
        for(i=0; i<dimX; i++) {
            index = j*dimX+i;
            grad_magn = (sqrtf(pow(P1[index],2) + pow(P2[index],2)))/alpha1;
            if (grad_magn > 1.0f) {
                P1[index] /= grad_magn;
                P2[index] /= grad_magn;
            }
        }}
    return 1;
}
/*Calculating dual variable Q (using forward differences)*/
float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, float sigma)
{
    long i,j,index;
    float q1, q2, q11, q22;
#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,index,q1,q2,q11,q22)
    for(j=0; j<dimY; j++) {
        for(i=0; i<dimX; i++) {
            index = j*dimX+i;
            q1 = 0.0f; q11 = 0.0f; q2 = 0.0f; q22 = 0.0f;
            /* boundary conditions (Neuman) */
            if (i != dimX-1){
                q1 = V1[j*dimX+(i+1)] - V1[index];
                q11 = V2[j*dimX+(i+1)] - V2[index];
            }
            if (j != dimY-1) {
                q2 = V2[(j+1)*dimX+i] - V2[index];
                q22 = V1[(j+1)*dimX+i] - V1[index];
            }
            Q1[index] += sigma*(q1);
            Q2[index] += sigma*(q2);
            Q3[index] += sigma*(0.5f*(q11 + q22));
        }}
    return 1;
}
float ProjQ_2D(float *Q1, float *Q2, float *Q3, long dimX, long dimY, float alpha0)
{
    float grad_magn;
    long i,j,index;
#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,index,grad_magn)
    for(j=0; j<dimY; j++) {
        for(i=0; i<dimX; i++) {
            index = j*dimX+i;
            grad_magn = sqrtf(pow(Q1[index],2) + pow(Q2[index],2) + 2*pow(Q3[index],2));
            grad_magn = grad_magn/alpha0;
            if (grad_magn > 1.0f) {
                Q1[index] /= grad_magn;
                Q2[index] /= grad_magn;
                Q3[index] /= grad_magn;
            }
        }}
    return 1;
}
/* Divergence and projection for P (backward differences)*/
float DivProjP_2D(float *U, float *U0, float *P1, float *P2, long dimX, long dimY, float lambda, float tau)
{
    long i,j,index;
    float P_v1, P_v2, div;
#pragma omp parallel for shared(U,U0,P1,P2) private(i,j,index,P_v1,P_v2,div)
    for(j=0; j<dimY; j++) {
        for(i=0; i<dimX; i++) {
            index = j*dimX+i;
            
            if (i == 0) P_v1 = P1[index];
            else if (i == dimX-1) P_v1 = -P1[j*dimX+(i-1)];
            else P_v1 = P1[index] - P1[j*dimX+(i-1)];
            
            if (j == 0) P_v2 = P2[index];
            else if (j == dimY-1) P_v2 = -P2[(j-1)*dimX+i];
            else P_v2 = P2[index] - P2[(j-1)*dimX+i];
            
            div = P_v1 + P_v2;
            U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau);
        }}
    return *U;
}
/*get updated solution U*/
float newU(float *U, float *U_old, long dimX, long dimY)
{
    long i;
#pragma omp parallel for shared(U,U_old) private(i)
    for(i=0; i<dimX*dimY; i++) U[i] = 2*U[i] - U_old[i];
    return *U;
}
/*get update for V (backward differences)*/
float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, long dimX, long dimY, float tau)
{
    long i, j, index;
    float q1, q3_x, q3_y, q2, div1, div2;
#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i, j, index, q1, q3_x, q3_y, q2, div1, div2)
    for(j=0; j<dimY; j++) {
        for(i=0; i<dimX; i++) {
            index = j*dimX+i;
            
            /* boundary conditions (Neuman) */
            if (i == 0) {
                q1 = Q1[index];
                q3_x = Q3[index]; }
            else if (i == dimX-1) {
                q1 = -Q1[j*dimX+(i-1)];
                q3_x = -Q3[j*dimX+(i-1)];  }
            else {
                q1 = Q1[index] - Q1[j*dimX+(i-1)];
                q3_x = Q3[index] - Q3[j*dimX+(i-1)];  }
            
            if (j == 0) {
                q2 = Q2[index];
                q3_y = Q3[index]; }
            else if (j == dimY-1) {
                q2 = -Q2[(j-1)*dimX+i];
                q3_y = -Q3[(j-1)*dimX+i]; }
            else {
                q2 = Q2[index] - Q2[(j-1)*dimX+i];
                q3_y = Q3[index] - Q3[(j-1)*dimX+i]; }
            
            
            div1 = q1 + q3_y;
            div2 = q3_x + q2;
            V1[index] += tau*(P1[index] + div1);
            V2[index] += tau*(P2[index] + div2);
        }}
    return 1;
}

/********************************************************************/
/***************************3D Functions*****************************/
/********************************************************************/
/*Calculating dual variable P (using forward differences)*/
float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float sigma)
{
    long i,j,k, index;
#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k,index)
    for(k=0; k<dimZ; k++) {
        for(j=0; j<dimY; j++) {
            for(i=0; i<dimX; i++) {
                index = (dimX*dimY)*k + j*dimX+i;
                /* symmetric boundary conditions (Neuman) */
                if (i == dimX-1) P1[index] += sigma*(-V1[index]);
                else P1[index] += sigma*((U[(dimX*dimY)*k + j*dimX+(i+1)] - U[index])  - V1[index]);
                if (j == dimY-1) P2[index] += sigma*(-V2[index]);
                else  P2[index] += sigma*((U[(dimX*dimY)*k + (j+1)*dimX+i] - U[index])  - V2[index]);
                if (k == dimZ-1) P3[index] += sigma*(-V3[index]);
                else  P3[index] += sigma*((U[(dimX*dimY)*(k+1) + j*dimX+i] - U[index])  - V3[index]);
            }}}
    return 1;
}
/*Projection onto convex set for P*/
float ProjP_3D(float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float alpha1)
{
    float grad_magn;
    long i,j,k,index;
#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,index,grad_magn)
    for(k=0; k<dimZ; k++) {
        for(j=0; j<dimY; j++) {
            for(i=0; i<dimX; i++) {
                index = (dimX*dimY)*k + j*dimX+i;
                grad_magn = (sqrtf(pow(P1[index],2) + pow(P2[index],2) + pow(P3[index],2)))/alpha1;
                if (grad_magn > 1.0f) {
                    P1[index] /= grad_magn;
                    P2[index] /= grad_magn;
                    P3[index] /= grad_magn;
                }
            }}}
    return 1;
}
/*Calculating dual variable Q (using forward differences)*/
float DualQ_3D(float *V1, float *V2, float *V3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float sigma)
{
    long i,j,k,index;
    float q1, q2, q3, q11, q22, q33, q44, q55, q66;
#pragma omp parallel for shared(Q1,Q2,Q3,Q4,Q5,Q6,V1,V2,V3) private(i,j,k,index,q1,q2,q3,q11,q22,q33,q44,q55,q66)
    for(k=0; k<dimZ; k++) {
        for(j=0; j<dimY; j++) {
            for(i=0; i<dimX; i++) {
                index = (dimX*dimY)*k + j*dimX+i;
                q1 = 0.0f; q11 = 0.0f; q33 = 0.0f; q2 = 0.0f; q22 = 0.0f; q55 = 0.0f; q3 = 0.0f; q44 = 0.0f; q66 = 0.0f;
                /* symmetric boundary conditions (Neuman) */
                if (i != dimX-1){
                    q1 = V1[(dimX*dimY)*k + j*dimX+(i+1)] - V1[index];
                    q11 = V2[(dimX*dimY)*k + j*dimX+(i+1)] - V2[index];
                    q33 = V3[(dimX*dimY)*k + j*dimX+(i+1)] - V3[index];
                }
                if (j != dimY-1) {
                    q2 = V2[(dimX*dimY)*k + (j+1)*dimX+i] - V2[index];
                    q22 = V1[(dimX*dimY)*k + (j+1)*dimX+i] - V1[index];
                    q55 = V3[(dimX*dimY)*k + (j+1)*dimX+i] - V3[index];
                }
                if (k != dimZ-1) {
                    q3 = V3[(dimX*dimY)*(k+1) + j*dimX+i] - V3[index];
                    q44 = V1[(dimX*dimY)*(k+1) + j*dimX+i] - V1[index];
                    q66 = V2[(dimX*dimY)*(k+1) + j*dimX+i] - V2[index];
                }
                
                Q1[index] += sigma*(q1); /*Q11*/
                Q2[index] += sigma*(q2); /*Q22*/
                Q3[index] += sigma*(q3); /*Q33*/
                Q4[index] += sigma*(0.5f*(q11 + q22)); /* Q21 / Q12 */
                Q5[index] += sigma*(0.5f*(q33 + q44)); /* Q31 / Q13 */
                Q6[index] += sigma*(0.5f*(q55 + q66)); /* Q32 / Q23 */
            }}}
    return 1;
}
float ProjQ_3D(float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float alpha0)
{
    float grad_magn;
    long i,j,k,index;
#pragma omp parallel for shared(Q1,Q2,Q3,Q4,Q5,Q6) private(i,j,k,index,grad_magn)
    for(k=0; k<dimZ; k++) {
        for(j=0; j<dimY; j++) {
            for(i=0; i<dimX; i++) {
                index = (dimX*dimY)*k + j*dimX+i;
                grad_magn = sqrtf(pow(Q1[index],2) + pow(Q2[index],2) + pow(Q3[index],2) + 2.0f*pow(Q4[index],2) + 2.0f*pow(Q5[index],2) + 2.0f*pow(Q6[index],2));
                grad_magn = grad_magn/alpha0;
                if (grad_magn > 1.0f) {
                    Q1[index] /= grad_magn;
                    Q2[index] /= grad_magn;
                    Q3[index] /= grad_magn;
                    Q4[index] /= grad_magn;
                    Q5[index] /= grad_magn;
                    Q6[index] /= grad_magn;
                }
            }}}
    return 1;
}
/* Divergence and projection for P*/
float DivProjP_3D(float *U, float *U0, float *P1, float *P2, float *P3, long dimX, long dimY, long dimZ, float lambda, float tau)
{
    long i,j,k,index;
    float P_v1, P_v2, P_v3, div;
#pragma omp parallel for shared(U,U0,P1,P2,P3) private(i,j,k,index,P_v1,P_v2,P_v3,div)
    for(k=0; k<dimZ; k++) {
        for(j=0; j<dimY; j++) {
            for(i=0; i<dimX; i++) {
                index = (dimX*dimY)*k + j*dimX+i;
                
                if (i == 0) P_v1 = P1[index];
                else if (i == dimX-1)  P_v1 = -P1[(dimX*dimY)*k + j*dimX+(i-1)];
                else P_v1 = P1[index] - P1[(dimX*dimY)*k + j*dimX+(i-1)];
                if (j == 0) P_v2 = P2[index];
                else if (j == dimY-1) P_v2 = -P2[(dimX*dimY)*k + (j-1)*dimX+i];
                else P_v2 = P2[index] - P2[(dimX*dimY)*k + (j-1)*dimX+i];
                if (k == 0) P_v3 = P3[index];
                else if (k == dimZ-1) P_v3 = -P3[(dimX*dimY)*(k-1) + (j)*dimX+i];
                else P_v3 = P3[index] - P3[(dimX*dimY)*(k-1) + (j)*dimX+i];
                
                div = P_v1 + P_v2 + P_v3;
                U[index] = (lambda*(U[index] + tau*div) + tau*U0[index])/(lambda + tau);
            }}}
    return *U;
}
/*get update for V*/
float UpdV_3D(float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, float *Q1, float *Q2, float *Q3, float *Q4, float *Q5, float *Q6, long dimX, long dimY, long dimZ, float tau)
{
    long i,j,k,index;
    float q1, q4x, q5x, q2, q4y, q6y, q6z, q5z, q3, div1, div2, div3;
#pragma omp parallel for shared(V1,V2,V3,P1,P2,P3,Q1,Q2,Q3,Q4,Q5,Q6) private(i,j,k,index,q1,q4x,q5x,q2,q4y,q6y,q6z,q5z,q3,div1,div2,div3)
    for(k=0; k<dimZ; k++) {
        for(j=0; j<dimY; j++) {
            for(i=0; i<dimX; i++) {
                index = (dimX*dimY)*k + j*dimX+i;
                q1 = 0.0f; q4x= 0.0f; q5x= 0.0f; q2= 0.0f; q4y= 0.0f; q6y= 0.0f; q6z= 0.0f; q5z= 0.0f; q3= 0.0f;
                /* Q1 - Q11, Q2 - Q22, Q3 -  Q33, Q4 - Q21/Q12, Q5 - Q31/Q13, Q6 - Q32/Q23*/
                /* symmetric boundary conditions (Neuman) */
                
                if (i == 0) {
                    q1 = Q1[index];
                    q4x = Q4[index];
                    q5x = Q5[index]; }
                else if (i == dimX-1) {
                    q1 = -Q1[(dimX*dimY)*k + j*dimX+(i-1)];
                    q4x = -Q4[(dimX*dimY)*k + j*dimX+(i-1)];
                    q5x = -Q5[(dimX*dimY)*k + j*dimX+(i-1)]; }
                else {
                    q1 = Q1[index] - Q1[(dimX*dimY)*k + j*dimX+(i-1)];
                    q4x = Q4[index] - Q4[(dimX*dimY)*k + j*dimX+(i-1)];
                    q5x = Q5[index] - Q5[(dimX*dimY)*k + j*dimX+(i-1)]; }
                if (j == 0) {
                    q2 = Q2[index];
                    q4y = Q4[index];
                    q6y = Q6[index]; }
                else if (j == dimY-1) {
                    q2 = -Q2[(dimX*dimY)*k + (j-1)*dimX+i];
                    q4y = -Q4[(dimX*dimY)*k + (j-1)*dimX+i];
                    q6y = -Q6[(dimX*dimY)*k + (j-1)*dimX+i]; }
                else {
                    q2 = Q2[index] - Q2[(dimX*dimY)*k + (j-1)*dimX+i];
                    q4y = Q4[index] - Q4[(dimX*dimY)*k + (j-1)*dimX+i];
                    q6y = Q6[index] - Q6[(dimX*dimY)*k + (j-1)*dimX+i]; }
                if (k == 0) {
                    q6z = Q6[index];
                    q5z = Q5[index];
                    q3 = Q3[index]; }
                else if (k == dimZ-1) {
                    q6z = -Q6[(dimX*dimY)*(k-1) + (j)*dimX+i];
                    q5z =  -Q5[(dimX*dimY)*(k-1) + (j)*dimX+i];
                    q3 =  -Q3[(dimX*dimY)*(k-1) + (j)*dimX+i]; }
                else {
                    q6z = Q6[index] - Q6[(dimX*dimY)*(k-1) + (j)*dimX+i];
                    q5z = Q5[index] - Q5[(dimX*dimY)*(k-1) + (j)*dimX+i];
                    q3 = Q3[index] - Q3[(dimX*dimY)*(k-1) + (j)*dimX+i]; }
                
                div1 = q1 + q4y + q5z;
                div2 = q4x + q2 + q6z;
                div3 = q5x + q6y + q3;
                
                V1[index] += tau*(P1[index] + div1);
                V2[index] += tau*(P2[index] + div2);
                V3[index] += tau*(P3[index] + div3);
            }}}
    return 1;
}

float copyIm_3Ar(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, long dimX, long dimY, long dimZ)
{
    long j;
#pragma omp parallel for shared(V1, V2, V3, V1_old, V2_old, V3_old) private(j)
    for (j = 0; j<dimX*dimY*dimZ; j++)  {
        V1_old[j] = V1[j];
        V2_old[j] = V2[j];
        V3_old[j] = V3[j];
    }
    return 1;
}

/*get updated solution U*/
float newU3D(float *U, float *U_old, long dimX, long dimY, long dimZ)
{
    long i;
#pragma omp parallel for shared(U, U_old) private(i)
    for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2.0f*U[i] - U_old[i];
    return *U;
}


/*get updated solution U*/
float newU3D_3Ar(float *V1, float *V2, float *V3, float *V1_old, float *V2_old, float *V3_old, long dimX, long dimY, long dimZ)
{
    long i;
#pragma omp parallel for shared(V1, V2, V3, V1_old, V2_old, V3_old) private(i)
    for(i=0; i<dimX*dimY*dimZ; i++) {
        V1[i] = 2.0f*V1[i] - V1_old[i];
        V2[i] = 2.0f*V2[i] - V2_old[i];
        V3[i] = 2.0f*V3[i] - V3_old[i];
    }
    return 1;
}