summaryrefslogtreecommitdiffstats
path: root/src/Python/src/cpu_regularisers.pyx
blob: 904b4f5e8c4dcedc2f2c2ed2818be056eaac0c7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
# distutils: language=c++
"""
Copyright 2018 CCPi
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Author: Edoardo Pasca, Daniil Kazantsev
"""

import cython
import numpy as np
cimport numpy as np

cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float *infovector, float *lambdaPar, int lambda_is_arr, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ);
cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int dimX, int dimY, int dimZ);
cdef extern float SB_TV_CPU_main(float *Input, float *Output, float *infovector, float mu, int iter, float epsil, int methodTV, int dimX, int dimY, int dimZ);
cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float *infovector, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ);
cdef extern float TGV_main(float *Input, float *Output, float *infovector, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, float epsil, int dimX, int dimY, int dimZ);
cdef extern float Diffusion_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, float epsil, int dimX, int dimY, int dimZ);
cdef extern float Diffus4th_CPU_main(float *Input, float *Output,  float *infovector, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ);
cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float *infovector, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int dimX, int dimY, int dimZ);
cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ);
cdef extern float PatchSelect_CPU_main(float *Input, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int SearchWindow, int SimilarWin, int NumNeighb, float h, int switchM);
cdef extern float Nonlocal_TV_CPU_main(float *A_orig, float *Output, unsigned short *H_i, unsigned short *H_j, unsigned short *H_k, float *Weights, int dimX, int dimY, int dimZ, int NumNeighb, float lambdaReg, int IterNumb);

cdef extern float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
cdef extern float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int trigger, int dimX, int dimY, int dimZ);
cdef extern float TV_energy2D(float *U, float *U0, float *E_val, float lambdaPar, int type, int dimX, int dimY);
cdef extern float TV_energy3D(float *U, float *U0, float *E_val, float lambdaPar, int type, int dimX, int dimY, int dimZ);
#****************************************************************#
#********************** Total-variation ROF *********************#
#****************************************************************#
def TV_ROF_CPU(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter,tolerance_param):
    if inputData.ndim == 2:
        return TV_ROF_2D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter,tolerance_param)
    elif inputData.ndim == 3:
        return TV_ROF_3D(inputData, regularisation_parameter, iterationsNumb, marching_step_parameter,tolerance_param)

def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
                     regularisation_parameter,
                     int iterationsNumb,
                     float marching_step_parameter,
                     float tolerance_param):
    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    cdef float lambdareg
    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] reg
    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
            np.zeros([dims[0],dims[1]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
            np.ones([2], dtype='float32')

    # Run ROF iterations for 2D data
    # TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], &infovec[0], regularisation_parameter, iterationsNumb, marching_step_parameter, tolerance_param, dims[1], dims[0], 1)
     # Run ROF iterations for 2D data
    if isinstance (regularisation_parameter, np.ndarray):
        reg = regularisation_parameter.copy()
        TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], &infovec[0], &reg[0,0],  1, iterationsNumb, marching_step_parameter, tolerance_param, dims[1], dims[0], 1)
    else: # supposedly this would be a float
        lambdareg = regularisation_parameter;
        TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], &infovec[0], &lambdareg,  0, iterationsNumb, marching_step_parameter, tolerance_param, dims[1], dims[0], 1)
    return (outputData,infovec)

def TV_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
                     regularisation_parameter,
                     int iterationsNumb,
                     float marching_step_parameter,
                     float tolerance_param):
    cdef long dims[3]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]
    cdef float lambdareg
    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] reg
    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
            np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
            np.ones([2], dtype='float32')

    # Run ROF iterations for 3D data
    #TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0], regularisation_parameter, iterationsNumb, marching_step_parameter, tolerance_param, dims[2], dims[1], dims[0])
    if isinstance (regularisation_parameter, np.ndarray):
        reg = regularisation_parameter.copy()
        TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0], &reg[0,0,0], 1, iterationsNumb, marching_step_parameter, tolerance_param, dims[2], dims[1], dims[0])
    else: # supposedly this would be a float
        lambdareg = regularisation_parameter
        TV_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0], &lambdareg, 0, iterationsNumb, marching_step_parameter, tolerance_param, dims[2], dims[1], dims[0])
    return (outputData,infovec)

#****************************************************************#
#********************** Total-variation FGP *********************#
#****************************************************************#
#******** Total-variation Fast-Gradient-Projection (FGP)*********#
def TV_FGP_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg):
    if inputData.ndim == 2:
        return TV_FGP_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg)
    elif inputData.ndim == 3:
        return TV_FGP_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, nonneg)

def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
                     float regularisation_parameter,
                     int iterationsNumb,
                     float tolerance_param,
                     int methodTV,
                     int nonneg):

    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]

    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
            np.zeros([dims[0],dims[1]], dtype='float32')

    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
            np.ones([2], dtype='float32')

    #/* Run FGP-TV iterations for 2D data */
    TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], &infovec[0], regularisation_parameter,
                       iterationsNumb,
                       tolerance_param,
                       methodTV,
                       nonneg,
                       dims[1],dims[0],1)

    return (outputData,infovec)

def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
                     float regularisation_parameter,
                     int iterationsNumb,
                     float tolerance_param,
                     int methodTV,
                     int nonneg):

    cdef long dims[3]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]

    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
            np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
            np.zeros([2], dtype='float32')

    #/* Run FGP-TV iterations for 3D data */
    TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0], regularisation_parameter,
                       iterationsNumb,
                       tolerance_param,
                       methodTV,
                       nonneg,
                       dims[2], dims[1], dims[0])
    return (outputData,infovec)

#***************************************************************#
#********************** Total-variation SB *********************#
#***************************************************************#
#*************** Total-variation Split Bregman (SB)*************#
def TV_SB_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV):
    if inputData.ndim == 2:
        return TV_SB_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV)
    elif inputData.ndim == 3:
        return TV_SB_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV)

def TV_SB_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
                     float regularisation_parameter,
                     int iterationsNumb,
                     float tolerance_param,
                     int methodTV):

    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]

    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
            np.zeros([dims[0],dims[1]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
            np.zeros([2], dtype='float32')

    #/* Run SB-TV iterations for 2D data */
    SB_TV_CPU_main(&inputData[0,0], &outputData[0,0], &infovec[0],
                       regularisation_parameter,
                       iterationsNumb,
                       tolerance_param,
                       methodTV,
                       dims[1],dims[0], 1)

    return (outputData,infovec)

def TV_SB_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
                     float regularisation_parameter,
                     int iterationsNumb,
                     float tolerance_param,
                     int methodTV):
    cdef long dims[3]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]

    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
            np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
            np.zeros([2], dtype='float32')

    #/* Run SB-TV iterations for 3D data */
    SB_TV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0],
                       regularisation_parameter,
                       iterationsNumb,
                       tolerance_param,
                       methodTV,
                       dims[2], dims[1], dims[0])
    return (outputData,infovec)
#***************************************************************#
#******************* ROF - LLT regularisation ******************#
#***************************************************************#
def LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, tolerance_param):
    if inputData.ndim == 2:
        return LLT_ROF_2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, tolerance_param)
    elif inputData.ndim == 3:
        return LLT_ROF_3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, tolerance_param)

def LLT_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
                     float regularisation_parameterROF,
                     float regularisation_parameterLLT,
                     int iterations,
                     float time_marching_parameter,
                     float tolerance_param):

    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]

    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
            np.zeros([dims[0],dims[1]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
            np.zeros([2], dtype='float32')

    #/* Run ROF-LLT iterations for 2D data */
    LLT_ROF_CPU_main(&inputData[0,0], &outputData[0,0], &infovec[0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter,
                     tolerance_param,
                     dims[1],dims[0],1)
    return (outputData,infovec)

def LLT_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
                     float regularisation_parameterROF,
                     float regularisation_parameterLLT,
                     int iterations,
                     float time_marching_parameter,
                     float tolerance_param):

    cdef long dims[3]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]

    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
            np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
            np.zeros([2], dtype='float32')

    #/* Run ROF-LLT iterations for 3D data */
    LLT_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0], regularisation_parameterROF, regularisation_parameterLLT, iterations,
                     time_marching_parameter,
                     tolerance_param,
                     dims[2], dims[1], dims[0])
    return (outputData,infovec)
#***************************************************************#
#***************** Total Generalised Variation *****************#
#***************************************************************#
def TGV_CPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst, tolerance_param):
    if inputData.ndim == 2:
        return TGV_2D(inputData, regularisation_parameter, alpha1, alpha0,
                      iterations, LipshitzConst, tolerance_param)
    elif inputData.ndim == 3:
        return TGV_3D(inputData, regularisation_parameter, alpha1, alpha0,
                      iterations, LipshitzConst, tolerance_param)

def TGV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
                     float regularisation_parameter,
                     float alpha1,
                     float alpha0,
                     int iterationsNumb,
                     float LipshitzConst,
                     float tolerance_param):

    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]

    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
            np.zeros([dims[0],dims[1]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
                np.zeros([2], dtype='float32')

    #/* Run TGV iterations for 2D data */
    TGV_main(&inputData[0,0], &outputData[0,0],  &infovec[0],  regularisation_parameter,
                       alpha1,
                       alpha0,
                       iterationsNumb,
                       LipshitzConst,
                       tolerance_param,
                       dims[1],dims[0],1)
    return (outputData,infovec)
def TGV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
                     float regularisation_parameter,
                     float alpha1,
                     float alpha0,
                     int iterationsNumb,
                     float LipshitzConst,
                     float tolerance_param):

    cdef long dims[3]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]

    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
            np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
                np.zeros([2], dtype='float32')

    #/* Run TGV iterations for 3D data */
    TGV_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0], regularisation_parameter,
                       alpha1,
                       alpha0,
                       iterationsNumb,
                       LipshitzConst,
                       tolerance_param,
                       dims[2], dims[1], dims[0])
    return (outputData,infovec)

#****************************************************************#
#***************Nonlinear (Isotropic) Diffusion******************#
#****************************************************************#
def NDF_CPU(inputData, regularisation_parameter, edge_parameter, iterationsNumb,time_marching_parameter, penalty_type,tolerance_param):
    if inputData.ndim == 2:
        return NDF_2D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, tolerance_param)
    elif inputData.ndim == 3:
        return NDF_3D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, tolerance_param)

def NDF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
                     float regularisation_parameter,
                     float edge_parameter,
                     int iterationsNumb,
                     float time_marching_parameter,
                     int penalty_type,
                     float tolerance_param):
    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]

    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
            np.zeros([dims[0],dims[1]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
                np.zeros([2], dtype='float32')

    # Run Nonlinear Diffusion iterations for 2D data
    Diffusion_CPU_main(&inputData[0,0], &outputData[0,0], &infovec[0],
    regularisation_parameter, edge_parameter, iterationsNumb,
    time_marching_parameter, penalty_type,
    tolerance_param,
    dims[1], dims[0], 1)
    return (outputData,infovec)

def NDF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
                     float regularisation_parameter,
                     float edge_parameter,
                     int iterationsNumb,
                     float time_marching_parameter,
                     int penalty_type,
                     float tolerance_param):
    cdef long dims[3]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]

    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
            np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
                np.zeros([2], dtype='float32')

    # Run Nonlinear Diffusion iterations for  3D data
    Diffusion_CPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0],
    regularisation_parameter, edge_parameter, iterationsNumb,
    time_marching_parameter, penalty_type,
    tolerance_param,
    dims[2], dims[1], dims[0])
    return (outputData,infovec)

#****************************************************************#
#*************Anisotropic Fourth-Order diffusion*****************#
#****************************************************************#
def Diff4th_CPU(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter,tolerance_param):
    if inputData.ndim == 2:
        return Diff4th_2D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter,tolerance_param)
    elif inputData.ndim == 3:
        return Diff4th_3D(inputData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter,tolerance_param)

def Diff4th_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
                     float regularisation_parameter,
                     float edge_parameter,
                     int iterationsNumb,
                     float time_marching_parameter,
                     float tolerance_param):
    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]

    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
            np.zeros([dims[0],dims[1]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
                np.zeros([2], dtype='float32')

    # Run Anisotropic Fourth-Order diffusion for 2D data
    Diffus4th_CPU_main(&inputData[0,0], &outputData[0,0], &infovec[0],
    regularisation_parameter,
    edge_parameter, iterationsNumb,
    time_marching_parameter,
    tolerance_param,
    dims[1], dims[0], 1)
    return (outputData,infovec)

def Diff4th_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
                     float regularisation_parameter,
                     float edge_parameter,
                     int iterationsNumb,
                     float time_marching_parameter,
                     float tolerance_param):
    cdef long dims[3]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]

    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
            np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
                    np.zeros([2], dtype='float32')

    # Run Anisotropic Fourth-Order diffusion for  3D data
    Diffus4th_CPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0],
    regularisation_parameter, edge_parameter,
    iterationsNumb, time_marching_parameter,
    tolerance_param,
    dims[2], dims[1], dims[0])
    return (outputData,infovec)
#****************************************************************#
#**************Directional Total-variation FGP ******************#
#****************************************************************#
#******** Directional TV Fast-Gradient-Projection (FGP)*********#
def dTV_FGP_CPU(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg):
    if inputData.ndim == 2:
        return dTV_FGP_2D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg)
    elif inputData.ndim == 3:
        return dTV_FGP_3D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg)

def dTV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
               np.ndarray[np.float32_t, ndim=2, mode="c"] refdata,
                     float regularisation_parameter,
                     int iterationsNumb,
                     float tolerance_param,
                     float eta_const,
                     int methodTV,
                     int nonneg):

    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]

    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
            np.zeros([dims[0],dims[1]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
                    np.zeros([2], dtype='float32')

    #/* Run FGP-dTV iterations for 2D data */
    dTV_FGP_CPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0], &infovec[0],
                       regularisation_parameter,
                       iterationsNumb,
                       tolerance_param,
                       eta_const,
                       methodTV,
                       nonneg,
                       dims[1], dims[0], 1)
    return (outputData,infovec)

def dTV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
               np.ndarray[np.float32_t, ndim=3, mode="c"] refdata,
                     float regularisation_parameter,
                     int iterationsNumb,
                     float tolerance_param,
                     float eta_const,
                     int methodTV,
                     int nonneg):
    cdef long dims[3]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]

    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
            np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \
                    np.zeros([2], dtype='float32')

    #/* Run FGP-dTV iterations for 3D data */
    dTV_FGP_CPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0], &infovec[0],
                       regularisation_parameter,
                       iterationsNumb,
                       tolerance_param,
                       eta_const,
                       methodTV,
                       nonneg,
                       dims[2], dims[1], dims[0])
    return (outputData,infovec)

#****************************************************************#
#*********************Total Nuclear Variation********************#
#****************************************************************#
def TNV_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param):
    if inputData.ndim == 2:
        return
    elif inputData.ndim == 3:
        return TNV_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param)

def TNV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
                     float regularisation_parameter,
                     int iterationsNumb,
                     float tolerance_param):
    cdef long dims[3]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]

    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
            np.zeros([dims[0],dims[1],dims[2]], dtype='float32')

    # Run TNV iterations for 3D (X,Y,Channels) data
    TNV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, tolerance_param, dims[2], dims[1], dims[0])
    return outputData
#****************************************************************#
#***************Patch-based weights calculation******************#
#****************************************************************#
def PATCHSEL_CPU(inputData, searchwindow, patchwindow, neighbours, edge_parameter):
    if inputData.ndim == 2:
        return PatchSel_2D(inputData, searchwindow, patchwindow, neighbours, edge_parameter)
    elif inputData.ndim == 3:
        return 1
def PatchSel_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
                     int searchwindow,
                     int patchwindow,
                     int neighbours,
                     float edge_parameter):
    cdef long dims[3]
    dims[0] = neighbours
    dims[1] = inputData.shape[0]
    dims[2] = inputData.shape[1]


    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] Weights = \
            np.zeros([dims[0], dims[1],dims[2]], dtype='float32')

    cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_i = \
            np.zeros([dims[0], dims[1],dims[2]], dtype='uint16')

    cdef np.ndarray[np.uint16_t, ndim=3, mode="c"] H_j = \
            np.zeros([dims[0], dims[1],dims[2]], dtype='uint16')

    # Run patch-based weight selection function
    PatchSelect_CPU_main(&inputData[0,0], &H_j[0,0,0], &H_i[0,0,0], &H_i[0,0,0], &Weights[0,0,0], dims[2], dims[1], 0, searchwindow, patchwindow,  neighbours,  edge_parameter, 1)
    return H_i, H_j, Weights
"""
def PatchSel_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
                     int searchwindow,
                     int patchwindow,
                     int neighbours,
                     float edge_parameter):
    cdef long dims[4]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]
    dims[3] = neighbours

    cdef np.ndarray[np.float32_t, ndim=4, mode="c"] Weights = \
            np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='float32')

    cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_i = \
            np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16')

    cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_j = \
            np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16')

    cdef np.ndarray[np.uint16_t, ndim=4, mode="c"] H_k = \
            np.zeros([dims[3],dims[0],dims[1],dims[2]], dtype='uint16')

    # Run patch-based weight selection function
    PatchSelect_CPU_main(&inputData[0,0,0], &H_i[0,0,0,0], &H_j[0,0,0,0], &H_k[0,0,0,0], &Weights[0,0,0,0], dims[2], dims[1], dims[0], searchwindow, patchwindow,  neighbours, edge_parameter, 1)
    return H_i, H_j, H_k, Weights
"""

#****************************************************************#
#***************Non-local Total Variation******************#
#****************************************************************#
def NLTV_CPU(inputData, H_i, H_j, H_k, Weights, regularisation_parameter, iterations):
    if inputData.ndim == 2:
        return NLTV_2D(inputData, H_i, H_j, Weights, regularisation_parameter, iterations)
    elif inputData.ndim == 3:
        return 1
def NLTV_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
                     np.ndarray[np.uint16_t, ndim=3, mode="c"] H_i,
                     np.ndarray[np.uint16_t, ndim=3, mode="c"] H_j,
                     np.ndarray[np.float32_t, ndim=3, mode="c"] Weights,
                     float regularisation_parameter,
                     int iterations):

    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    neighbours = H_i.shape[0]

    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
            np.zeros([dims[0],dims[1]], dtype='float32')

    # Run nonlocal TV regularisation
    Nonlocal_TV_CPU_main(&inputData[0,0], &outputData[0,0], &H_i[0,0,0], &H_j[0,0,0], &H_i[0,0,0], &Weights[0,0,0], dims[1], dims[0], 0, neighbours, regularisation_parameter, iterations)
    return outputData

#*********************Inpainting WITH****************************#
#***************Nonlinear (Isotropic) Diffusion******************#
#****************************************************************#
def NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type):
    if inputData.ndim == 2:
        return NDF_INP_2D(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type)
    elif inputData.ndim == 3:
        return NDF_INP_3D(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type)

def NDF_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
                     np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData,
                     float regularisation_parameter,
                     float edge_parameter,
                     int iterationsNumb,
                     float time_marching_parameter,
                     int penalty_type):

    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]


    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
            np.zeros([dims[0],dims[1]], dtype='float32')

    # Run Inpaiting by Diffusion iterations for 2D data
    Diffusion_Inpaint_CPU_main(&inputData[0,0], &maskData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1)
    return outputData

def NDF_INP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
                     np.ndarray[np.uint8_t, ndim=3, mode="c"] maskData,
                     float regularisation_parameter,
                     float edge_parameter,
                     int iterationsNumb,
                     float time_marching_parameter,
                     int penalty_type):
    cdef long dims[3]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]

    cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
            np.zeros([dims[0],dims[1],dims[2]], dtype='float32')

    # Run Inpaiting by Diffusion iterations for 3D data
    Diffusion_Inpaint_CPU_main(&inputData[0,0,0], &maskData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0])

    return outputData
#*********************Inpainting WITH****************************#
#***************Nonlocal Vertical Marching method****************#
#****************************************************************#
def NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterationsNumb):
    if inputData.ndim == 2:
        return NVM_INP_2D(inputData, maskData, SW_increment, iterationsNumb)
    elif inputData.ndim == 3:
        return

def NVM_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
               np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData,
                     int SW_increment,
                     int iterationsNumb):
    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]

    cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
            np.zeros([dims[0],dims[1]], dtype='float32')

    cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData_upd = \
            np.zeros([dims[0],dims[1]], dtype='uint8')

    # Run Inpaiting by Nonlocal vertical marching method for 2D data
    NonlocalMarching_Inpaint_main(&inputData[0,0], &maskData[0,0], &outputData[0,0],
                                  &maskData_upd[0,0],
                                  SW_increment, iterationsNumb, 1, dims[1], dims[0], 1)

    return (outputData, maskData_upd)


##############################################################################

#****************************************************************#
#***************Calculation of TV-energy functional**************#
#****************************************************************#
def TV_ENERGY(inputData, inputData0, regularisation_parameter, typeFunctional):
    if inputData.ndim == 2:
        return TV_ENERGY_2D(inputData, inputData0, regularisation_parameter, typeFunctional)
    elif inputData.ndim == 3:
        return TV_ENERGY_3D(inputData, inputData0, regularisation_parameter, typeFunctional)

def TV_ENERGY_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
                 np.ndarray[np.float32_t, ndim=2, mode="c"] inputData0,
                     float regularisation_parameter,
                     int typeFunctional):

    cdef long dims[2]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]

    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] outputData = \
            np.zeros([1], dtype='float32')

    # run function
    TV_energy2D(&inputData[0,0], &inputData0[0,0], &outputData[0], regularisation_parameter, typeFunctional, dims[1], dims[0])

    return outputData

def TV_ENERGY_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
                 np.ndarray[np.float32_t, ndim=3, mode="c"] inputData0,
                     float regularisation_parameter,
                     int typeFunctional):

    cdef long dims[3]
    dims[0] = inputData.shape[0]
    dims[1] = inputData.shape[1]
    dims[2] = inputData.shape[2]

    cdef np.ndarray[np.float32_t, ndim=1, mode="c"] outputData = \
            np.zeros([1], dtype='float32')

    # Run function
    TV_energy3D(&inputData[0,0,0], &inputData0[0,0,0], &outputData[0], regularisation_parameter, typeFunctional, dims[2], dims[1], dims[0])

    return outputData